scholarly journals Does pain sensitivity change by migraine phase? A blinded longitudinal study

Cephalalgia ◽  
2016 ◽  
Vol 37 (14) ◽  
pp. 1337-1349 ◽  
Author(s):  
Martin Uglem ◽  
Petter Moe Omland ◽  
Kristian Bernhard Nilsen ◽  
Erling Tronvik ◽  
Lars Jacob Stovner ◽  
...  

Objective Studies suggest that pain thresholds may be altered before and during migraine headaches, but it is still debated if a central or peripheral dysfunction is responsible for the onset of pain in migraine. The present blinded longitudinal study explores alterations in thermal pain thresholds and suprathreshold heat pain scores before, during, and after headache. Methods We measured pain thresholds to cold and heat, and pain scores to 30 seconds of suprathreshold heat four times in 49 migraineurs and once in 31 controls. Sessions in migraineurs were categorized by migraine diaries as interictal, preictal (≤one day before attack), ictal or postictal (≤one day after attack). Results Trigeminal cold pain thresholds were decreased ( p = 0.014) and pain scores increased ( p = 0.031) in the ictal compared to the interictal phase. Initial pain scores were decreased ( p < 0.029), and the temporal profile showed less adaptation ( p < 0.020) in the preictal compared to the interictal phase. Hand cold pain thresholds were decreased in interictal migraineurs compared to controls ( p < 0.019). Conclusion Preictal heat hypoalgesia and reduced adaptation was followed by ictal trigeminal cold suballodynia and heat hyperalgesia. Our results support that cyclic alterations of pain perception occur late in the prodromal phase before headache. Further longitudinal investigation of how pain physiology changes within the migraine cycle is important to gain a more complete understanding of the pathogenic mechanisms behind the migraine attack.

Cephalalgia ◽  
2010 ◽  
Vol 30 (8) ◽  
pp. 904-909 ◽  
Author(s):  
Trond Sand ◽  
Kristian Bernhard Nilsen ◽  
Knut Hagen ◽  
Lars Jacob Stovner

Normal heat pain threshold (HPT) and cold pain threshold (CPT) repeatability should be estimated in order to identify thermal allodynia in longitudinal studies, but such data are scarce in the literature. The aim of our study was to estimate normal HPT and CPT repeatability in the face, forehead, neck and hand. In addition, we reviewed briefly normative studies of thermal pain thresholds relevant for headache research. Thermal pain thresholds were measured on three different days in 31 healthy headache-free subjects. Coefficients of repeatability and normal limits were calculated. HPT and CPT were lowest in the face. Pooled across regions, the lower repeatability limit for the test/retest ratio was 63% for HPT and 55% for CPT. The upper normal CPT limit varied between 24.5°C and 29.7°C. Lower HPT limits ranged between 35.5°C and 40.8°C. Quantitative sensory methods provide useful information about headache and pain pathophysiology, and it is important to estimate the normal test/retest repeatability range in follow-up studies.


2005 ◽  
Vol 10 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Jeffrey J Borckardt ◽  
F Andrew Kozel ◽  
Berry Anderson ◽  
Angela Walker ◽  
Mark S George

BACKGROUND: Previous research suggests that vagus nerve stimulation (VNS) affects pain perception in epilepsy patients, with acute VNS decreasing pain thresholds and chronic VNS treatment increasing pain thresholds. However, no studies have investigated the effects of VNS on pain perception in chronically depressed adults, nor have controlled, systematic investigations been published on the differential effects of certain VNS device parameters on pain perception.OBJECTIVES: The present study tried to replicate the results of previous research showing acute pronociceptive effects of VNS and determine the effects of various device parameter settings on pain tolerance. The present study also investigated the relationship among patients' levels of depression, duration of VNS treatment and VNS-induced changes in pain perception.METHODS: A thermal pain challenge task was used to determine pain tolerance during VNS device activation using different combinations of VNS device parameter settings within subjects undergoing VNS therapy for chronic depression.RESULTS: Significant pronociceptive effects were found for acute VNS activation. Individual differences were found with respect to the VNS settings associated with the largest changes in pain perception. Severity of depression was inversely related to baseline pain tolerance, but depression severity was unrelated to VNS-induced acute changes in pain tolerance, as was the length of time participants had been undergoing VNS treatment.CONCLUSIONS: VNS appears to affect pain perception in depressed adults. Different VNS parameter settings may be associated with unique effects from patient to patient. More studies are needed to determine the long-term effects of VNS on pain perception.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kathrin Habig ◽  
Gothje Lautenschläger ◽  
Hagen Maxeiner ◽  
Frank Birklein ◽  
Heidrun H. Krämer ◽  
...  

Abstract Background Human hairy (not glabrous skin) is equipped with a subgroup of C-fibers, the C-tactile (CT) fibers. Those do not mediate pain but affective aspects of touch. CT-fiber-activation reduces experimental pain if they are intact. In this pilot study we investigated pain modulating capacities of CT-afferents in CRPS. Methods 10 CRPS-patients (mean age 33 years, SEM 3.3) and 11 healthy controls (mean age 43.2 years, SEM 3.9) participated. CT-targeted-touch (brush stroking, velocity: 3 cm/s) was applied on hairy and glabrous skin on the affected and contralateral limb. Patients rated pleasantness of CT-targeted-touch (anchors: 1 “not pleasant”—4 “very pleasant”) twice daily on 10 days. Pain intensity (NRS: 0 “no pain” – 10 “worst pain imaginable”) was assessed before, 0, 30, 60 and 120 min after each CT-stimulation. To assess sensory changes, quantitative-sensory-testing was performed at the beginning and the end of the trial period. Results CT-targeted-touch was felt more pleasant on the healthy compared to the affected limb on hairy (p < 0.001) and glabrous skin (p 0.002), independent of allodynia. In contrast to healthy controls patients felt no difference between stimulating glabrous and hairy skin on the affected limb. Thermal pain thresholds increased after CT-stimulation on the affected limb (cold-pain-threshold: p 0.016; heat-pain-threshold: p 0.033). Conclusions CT-stimulation normalizes thermal pain thresholds but has no effect on the overall pain in CRPS. Therefore, pain modulating properties of CT-fibers might be too weak to alter chronic pain in CRPS. Moreover, CT-fibers appear to lose their ability to mediate pleasant aspects of touch in CRPS.


2011 ◽  
Vol 26 (S2) ◽  
pp. 2132-2132
Author(s):  
E. Vermetten

Although posttraumatic stress disorder (PTSD) is associated with chronic pain, preliminary evidence suggests reduced experimental pain sensitivity in this disorder. The questions addressed in the present study were whether pain perception would also be reduced in PTSD patients who are not suffering from chronic pain symptoms, and whether a reduction in pain sensitivity would also be present in combat veterans who did not develop PTSD. For this, we determined thermal detection and pain thresholds in 10 male combat-related PTSD patients, 10 combat control subjects (no PTSD) and 10 healthy controls without combat experience. All subjects were pain free. First, we measured thermal sensory thresholds with ramped heat and cold stimuli using the method of limits. Ramped thermal sensory stimulation revealed no deficits for the detection of (non-noxious) f2.1thermal stimuli between groups. In contrast, heat and cold pain thresholds in both combat groups (PTSD and combat controls) were significantly increased compared to healthy controls. However, these stimuli could not distinguish between the two groups due to ceiling effects. When using longer-lasting heat stimulation at different temperatures (30 s duration; method of fixed stimuli), we found significantly lower frequency of pain reports in PTSD patients compared with both combat and healthy controls, as well as significantly lower pain ratings. Our results suggest an association of PTSD with reduced pain sensitivity, which could be related to PTSD-related (neuro-)psychological alterations or to a pre-existing risk factor for the disorder.


2007 ◽  
Vol 12 (4) ◽  
pp. 287-290 ◽  
Author(s):  
Jeffrey J Borckardt ◽  
Arthur R Smith ◽  
Scott T Reeves ◽  
Mitchell Weinstein ◽  
F Andrew Kozel ◽  
...  

BACKGROUND: Transcranial magnetic stimulation (TMS) of the motor cortex appears to alter pain perception in healthy adults and in patients with chronic neuropathic pain. There is, however, emerging brain imaging evidence that the left prefrontal cortex is involved in pain inhibition in humans.OBJECTIVE: Because the prefrontal cortex may be involved in descending pain inhibitory systems, the present pilot study was conducted to investigate whether stimulation of the left prefrontal cortex via TMS might affect pain perception in healthy adults.METHODS: Twenty healthy adults with no history of depression or chronic pain conditions volunteered to participate in a pilot laboratory study in which thermal pain thresholds were assessed before and after 15 min of repetitive TMS (rTMS) over the left prefrontal cortex (10 Hz, 100% resting motor threshold, 2 s on, 60 s off, 300 pulses total). Subjects were randomly assigned to receive either real or sham rTMS and were blind to condition.RESULTS: Subjects who received real rTMS demonstrated a significant increase in thermal pain thresholds following TMS. Subjects receiving sham TMS experienced no change in pain threshold.CONCLUSIONS: rTMS over the left prefrontal cortex increases thermal pain thresholds in healthy adults. Results from the present study support the idea that the left prefrontal cortex may be a promising TMS cortical target for the management of pain. More research is needed to establish the reliability of these findings, maximize the effect, determine the length of effect and elucidate possible mechanisms of action.


2014 ◽  
Vol 17;1 (1;17) ◽  
pp. 71-79
Author(s):  
John R. Grothusen

Background: Quantitative sensory testing (QST), with thermal threshold determinations, is a routine part of the comprehensive clinical workup of patients suffering from chronic pain, especially those with Complex Regional Pain Syndrome seen at our outpatient pain clinic. This is done to quantitatively assess each patient’s small fiber and sensory function in a controlled manner. Most patients have normal sensory detection thresholds, but there are large differences in thermal pain thresholds. Some patients display no thermal hyperalgesia, while other patients display severe thermal hyperalgesia when tested in all 4 limbs. Objectives: To ascertain the prevalence of thermal hyperalgesia in patients with complex regional pain syndrome type 1 (CRPS-I). Study Design: This was a retrospective review of the results of QST performed on 105 patients as part of their clinical workup. Setting: The outpatient clinic of the Department of Neurology at Drexel University College of Medicine. Methods: All patients had a diagnosis of CRPS-I. Thermal quantitative sensory testing, including cool detection, warm detection, cold pain, and heat pain, was performed on 8 distal sites on each patient as part of a comprehensive clinical examination. Results: With regards to thermal hyperalgesia, patients with CPRS-I appear to fall into distinct groups. One subgroup displays evidence of generalized cold and heat hyperalgesia, one subgroup displays evidence of generalized cold hyperalgesia only, one displays evidence of heat hyperalgesia only, and one subgroup does not display evidence of cold or heat hyperalgesia. Limitations: This study is based on retrospective information on a relatively small (105 patient records) number of patients. Since only patients with CRPS-I were included, the results are only applicable to this group. Conclusions: Thermal QST provides useful information about the sensory phenotype of individual patients. Subgrouping based on thermal hyperalgesia may be useful for future studies regarding prognosis, treatment selection, and efficacy. Key words: Complex regional pain syndrome, CRPS, quantitative sensory testing, QST, cold pain, heat pain, thermal hyperalgesia


2010 ◽  
Vol 34 (2) ◽  
pp. 25-34 ◽  
Author(s):  
Johann P. Kuhtz-Buschbeck ◽  
Wiebke Andresen ◽  
Stephan Göbel ◽  
René Gilster ◽  
Carsten Stick

About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025–1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.


Cephalalgia ◽  
2010 ◽  
Vol 31 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Todd J Schwedt ◽  
Melissa J Krauss ◽  
Karen Frey ◽  
Robert W Gereau

Objective: To determine if migraineurs have evidence of interictal cutaneous sensitisation. Subjects and methods: Thermal and mechanical pain thresholds in 20 episodic migraineurs, 20 chronic migraineurs, and 20 non-migraine control subjects were compared. Quantitative sensory testing was conducted when subjects had been migraine-free for at least 48 h. Heat, cold and mechanical pain thresholds, and heat and cold pain tolerance thresholds were measured. Results: Thermal pain thresholds and thermal pain tolerance thresholds differed significantly by headache group ( P = 0.001). During the interictal period, episodic and chronic migraineurs were more sensitive to thermal stimulation than non-migraine controls. Conclusions: Interictal sensitisation may predispose the migraineur to development of headaches, may be a marker of migraine activity, and a target for treatment.


2006 ◽  
Vol 8 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Ragnhild Raak ◽  
Mia Wallin

Thermal sensitivity, thermal pain thresholds, and catastrophizing were examined in individuals with whiplash associated disorders (WAD) and in healthy pain-free participants. Quantitative sensory testing (QST) was used to measure skin sensitivity to cold and warmth and cold and heat pain thresholds over both the thenar eminence and the trapezius muscle (TrM) in 17 participants with WAD (age 50.8± 11.3 years) and 18 healthy participants (age 44.8± 10.2 years). The Pain Catastrophizing Scale (PCS) was used to determine pain coping strategies, and visual analogue scales were used for self-assessment of current background pain in individuals in the WAD group as well as experienced pain intensity and unpleasantness after QST and sleep quality in all participants. There were significant differences in warmth threshold and cold and heat pain thresholds of the TrM site between the WAD and pain-free groups. Significant differences between the two groups were also found for the catastrophizing dimension of helplessness in the PCS and in self-assessed quality of sleep. A correlational analysis showed that current background pain is significantly correlated with both cold discrimination and cold pain threshold in the skin over the TrM in individuals with WAD. These findings imply that thermal sensitivity is an important factor to consider in providing nursing care to individuals with WAD. Because biopsychosocial factors also influence the experience of pain in individuals with WAD, the role of nurses includes not only the description of the pain phenomenon but also the identification of relieving and aggravating factors.


Sign in / Sign up

Export Citation Format

Share Document