heat hyperalgesia
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 23 (1) ◽  
pp. 107
Author(s):  
Matthias Vanneste ◽  
Marie Mulier ◽  
Ana Cristina Nogueira Freitas ◽  
Nele Van Ranst ◽  
Axelle Kerstens ◽  
...  

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.


2021 ◽  
Vol 22 (19) ◽  
pp. 10360
Author(s):  
Ling Chen ◽  
Qiguo Hu ◽  
Huaicun Liu ◽  
Yan Zhao ◽  
Sun-On Chan ◽  
...  

The microtubule, a major constituent of cytoskeletons, was shown to bind and interact with transient receptor potential vanilloid subfamily member 1 (TRPV1), and serves a pivotal role to produce thermal hyperalgesia in inflammatory pain. Nogo-A is a modulator of microtubule assembly and plays a key role in maintaining the function of TRPV1 in inflammatory heat pain. However, whether the microtubule dynamics modulated by Nogo-A in dorsal root ganglion (DRG) neurons participate in the inflammatory pain is not elucidated. Here we reported that the polymerization of microtubules in the DRG neurons, as indicated by the acetylated α-tubulin, tubulin polymerization-promoting protein 3 (TPPP3), and microtubule numbers, was significantly elevated in the complete Freund’s adjuvant (CFA) induced inflammatory pain. Consistent with our previous results, knock-out (KO) of Nogo-A protein significantly attenuated the heat hyperalgesia 72 h after CFA injection and decreased the microtubule polymerization via up-regulation of phosphorylation of collapsin response mediator protein 2 (CRMP2) in DRG. The colocalization of acetylated α-tubulin and TRPV1 in DRG neurons was also reduced dramatically in Nogo-A KO rats under inflammatory pain. Moreover, the down-regulation of TRPV1 in DRG of Nogo-A KO rats after injection of CFA was reversed by intrathecal injection of paclitaxel, a microtubule stabilizer. Furthermore, intrathecal injection of nocodazole (a microtubule disruptor) attenuated significantly the CFA-induced inflammatory heat hyperalgesia and the mechanical pain in a rat model of spared nerve injury (SNI). In these SNI cases, the Nogo-A and acetylated α-tubulin in DRG were also significantly up-regulated. We conclude that the polymerization of microtubules promoted by Nogo-A in DRG contributes to the development of inflammatory heat hyperalgesia mediated by TRPV1.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ana Baamonde ◽  
Luis Menéndez ◽  
Sara González-Rodríguez ◽  
Ana Lastra ◽  
Viola Seitz ◽  
...  

Abstract The newly designed fentanyl derivative [( ±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide] (NFEPP) was recently shown to produce analgesia selectively via peripheral mu-opioid receptors (MOR) at acidic pH in rat inflamed tissues. Here, we examined the pH-dependency of NFEPP binding to brain MOR and its effects on bone cancer-induced pain in mice. The IC50 of NFEPP to displace bound [3H]-DAMGO was significantly higher compared to fentanyl at pH 7.4, but no differences were observed at pH 5.5 or 6.5. Intravenous NFEPP (30–100 nmol/kg) or fentanyl (17–30 nmol/kg) inhibited heat hyperalgesia in mice inoculated with B16-F10 melanoma cells. The peripherally-restricted opioid receptor antagonist naloxone-methiodide reversed the effect of NFEPP (100 nmol/kg), but not of fentanyl (30 nmol/kg). The antihyperalgesic effect of NFEPP was abolished by a selective MOR- (cyprodime), but not delta- (naltrindole) or kappa- (nor-binaltorphimine) receptor antagonists. Ten-fold higher doses of NFEPP than fentanyl induced maximal antinociception in mice without tumors, which was reversed by the non-restricted antagonist naloxone, but not by naloxone-methiodide. NFEPP also reduced heat hyperalgesia produced by fibrosarcoma- (NCTC 2472) or prostate cancer-derived (RM1) cells. These data demonstrate the increased affinity of NFEPP for murine MOR at low pH, and its ability to inhibit bone cancer-induced hyperalgesia through peripheral MOR. In mice, central opioid receptors may be activated by ten-fold higher doses of NFEPP.


2020 ◽  
Vol 13 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Atul R. Chopade ◽  
Pramod A. Patil ◽  
Suraj N. Mali

Background: The standardized extracts of P. fraternus were previously reported by us for its anti-inflammatory, analgesic, and anti-arthritic biological potentials. However, we have not reported for a consequence of P. fraternus on chronic inflammatory muscle hyperalgesia. Herein, we have demonstrated chronic pain modulating effect of standardized extracts of P. fraternus. Materials and Methods: Firstly, we have collected various parts of P. fraternus plant including the dried stems, leaves, and roots. In order to produce chronic inflammations, we further allowed injection to the left gastrocnemius muscle belly of rats with a freshly prepared solution of 3% carrageenan in normal saline (100µL). Thermal/heat hyperalgesia, mechanical hyperalgesia and muscle circumferences were determined in the current experimental model. In order to estimate, chronic pain modulating potential of P. fraternus, we have also studied histopathological studies and measurement of prostaglandin E-2 (PGE2). Results: After administration of 3% carrageenan intramuscular injection, we investigated the chronic thermal and mechanical hypersensitivity of aforementioned test sample i.e. standardized extracts of P. fraternus in terms of adopting 2 gradual dosings of 200 and 400 mg/kg (administered intraperitoneally) from day 14th to 22nd. From our study, we observed significant antihyperalgesic activity; when we allowed administering standardized extracts of P. fraternus intraperitoneally. Conclusion: To conclude, we have investigated the antihyperalgesic and anti-inflammatory potentials of standardized extracts of P. fraternus. These effects might be having mediation via supraspinal or spinal neuronal mechanisms, and mainly observed due to evidence of PGE2 inhibitions.


2020 ◽  
Vol 18 ◽  
Author(s):  
Enza Palazzo ◽  
Ida Marabese ◽  
Francesca Gargano ◽  
Francesca Guida ◽  
Carmela Belardo ◽  
...  

: The animal models of neuropathic pain that faithfully reproduce the symptoms that occur in humans are a fundamental tool for understanding the mechanisms underlying the disease, identifying new targets, and developing effective drugs. So far, the studies aimed at describing the animal models of neuropathic pain have been focused mainly on the sensory symptoms associated with the disease consisting of mechanical allodynia and hyperalgesia, cold allodynia and hyperalgesia, and heat hyperalgesia. However, affective, and cognitive comorbidities occur in patients suffering from neuropathic pain, arising in a closely associated and dependent manner on the sensory symptoms. The same occurs in animal models of neuropathic pain in which anxiety- and depressive-like behaviors and cognitive disorders are observable at different time points from the induction of neuropathy. Today there are several tests available that exploit different paradigms in rodents for measuring sensorial, affective, and cognitive behavior. This review will describe those mainly used in the scientific community. The tests mainly used are based on the motor activity of the animals tested, so it is fundamental that it remains unaffected in the model used for inducing neuropathic pain. We hope that this review will be useful to the scientific community to direct the choice towards the best, most suitable, and simplest tests for the study of the sensory, affective, and cognitive symptoms associated with neuropathic pain.


2020 ◽  
Vol 45 (8) ◽  
pp. 610-619
Author(s):  
Jiayi Wu ◽  
Yangui Wang ◽  
Wugeng Cui ◽  
Wenhua Zhou ◽  
Xin Zhao

BackgroundPersistent neuropathic pain poses a health problem, for which effective therapy or antidote is in dire need. This work aimed to investigate the pain-relieving effect of chrysin, a natural flavonoid with monoamine oxidase inhibitory activity, in an experimental model of neuropathic pain and elucidate mechanism(s).MethodsChronic constriction injury (CCI) was produced by loose ligation of sciatic nerve in mice. The pain-related behaviors were examined using von Frey test and Hargreaves test. The serotonin-related mechanisms were investigated by serotonin depletion with p-chlorophenylalanine (PCPA) and antagonist tests in vivo and in vitro.ResultsRepeated treatment of CCI mice with chrysin (orally, two times per day for 2 weeks) ameliorated heat hyperalgesia and mechanical allodynia in a dose-dependent fashion (3–30 mg/kg). The chrysin-triggered pain relief seems serotonergically dependent, since its antihyperalgesic and antiallodynic actions were abolished by chemical depletion of serotonin by PCPA, whereas potentiated by 5-hydroxytryptophan (a precursor of 5-HT). Consistently, chrysin-treated neuropathic mice showed enhanced levels of spinal monoamines especially 5-HT, with depressed monoamine oxidase activity. Moreover, chrysin-evoked pain relief was preferentially counteracted by 5-HT1A receptor antagonist WAY-100635 delivered systematically or spinally. In vitro, chrysin (0.1–10 nM) increased the maximum effect (Emax, shown as stimulation of [35S] GTPγS binding) of 8-OH-DPAT, a 5-HT1A agonist. Beneficially, chrysin was able to correct comorbid behavioral symptoms of depression and anxiety evoked by neuropathic pain, without causing hypertensive crisis (known as ‘cheese reaction’).ConclusionThese findings confirm the antihyperalgesic and antiallodynic efficacies of chrysin, with spinal 5-HT1A receptors being critically engaged.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Pei Liu ◽  
Qing Zhang ◽  
You-shui Gao ◽  
Yi-Gang Huang ◽  
Junjie Gao ◽  
...  

Background. Sympathetic sprouting in the dorsal root ganglion (DRG) following nerve injuries had been proved to induce adult neuropathic pain. However, it is unclear whether the abnormal sprouting occurs in infant nerve injury. Methods. L5 spinal nerve ligation (SNL) or sham surgery was performed on adult rats and 10-day-old pups, and mechanical thresholds and heat hyperalgesia were analyzed on 3, 7, 14, 28, and 56 postoperative days. Tyrosine hydroxylase-labeled sympathetic fibers were observed at each time point, and 2 neurotrophin receptors (p75NTR and TrkA) were identified to explore the mechanisms of sympathetic sprouting. Results. Adult rats rapidly developed mechanical and heat hyperalgesia from postoperative day 3, with concurrent sympathetic sprouting in DRG. In contrast, the pup rats did not show a significantly lower mechanical threshold until postoperative day 28, at which time the sympathetic sprouting became evident in the DRG. No heat hyperalgesia was presented in pup rats at any time point. There was a late expression of glial p75NTR in DRG of pups from postoperative day 28, which was parallel to the occurrence of sympathetic sprouting. The expression of TrkA did not show such a postoperative syncing change. Conclusion. The delayed-onset mechanical allodynia in the infant nerve lesion was accompanied with parallel sympathetic sprouting in DRG. The late parallel expression of glial p75NTR injury may play an essential role in this process, which provides novel insight into the treatment of delayed adolescent neuropathic pain.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuwen Tang ◽  
Zhiyou Peng ◽  
Shoujun Tao ◽  
Jianliang Sun ◽  
Wenyuan Wang ◽  
...  

Vesicular glutamate transporter type 2 (VGLUT2) is known to play an important role in mediating heat hyperalgesia induced by inflammation. However, the underlying mechanism for this activity is poorly understood. Cyclin-dependent kinase 5 (Cdk5), serving as a key regulator in modulating release of glutamate, acted a key player in the formation of heat hyperalgesia of inflammatory pain. However, it remains unknown whether there is a bridge between Cdk5 and VGLUT2 for mediating inflammatory pain. Therefore, we designed the experiment to determine whether VGLUT2 signaling pathway is involved in inflammatory pain mediated by Cdk5 in the inflammatory pain model induced by complete Freund’s adjuvant (CFA). Our results showed that the coexpression of Cdk5/VGLUT2 in small- and medium-sized neuronal cells of the dorsal root ganglion (DRG) and spinal cord between days 1 and 3 following subcutaneous injection of CFA was significantly increased. Moreover, our study revealed that the expression of VGLUT2 protein in the DRG and spinal cord was remarkably increased between days 1 and 3 following CFA injection and was significantly reduced by roscovitine, a selective antagonist of Cdk5. Additionally, p25 but not p35, an activator of Cdk5, protein was significantly increased by CFA and reduced by roscovitine. Our findings suggested that VGLUT2/Cdk5 signaling pathway contributes to inflammatory pain mediated by Cdk5/p25.


2020 ◽  
Vol 31 (1) ◽  
pp. 27-33
Author(s):  
Renata Cristiane dos Reis ◽  
Caroline Machado Kopruszinski ◽  
Carina Fernanda Mattedi Nones ◽  
Débora Assunção Aguiar ◽  
Juliana Geremias Chichorro

2019 ◽  
Author(s):  
YuWen Tang ◽  
ZhiYou Peng ◽  
ShouJun Tao ◽  
Jianliang Sun ◽  
WenYuan Wang ◽  
...  

AbstractVesicular glutamate transporter type 2 (VGLUT2) is known to play an important role in mediating the heat hyperalgesia induced by inflammation. However, the underlying mechanism for this activity is poorly understood. Cyclin-dependent kinase 5 (Cdk5), serving as a key regulator in mediating release of glutamate, contributed to the inflammatory heat. It remains unknown whether there is a bridge between Cdk5 and VGLUT2 for mediating inflammatory pain. Therefore, we designed the experiment to determine whether VGLUT2 signaling pathway is involved in Inflammatory pain mediated by Cdk5 and the heat hyperalgesia induced by complete Freund’s adjuvant (CFA) can be reversed by roscovitine, a selective inhibitor for Cdk5 through inhibition of VGLUT2 expression. Immunohistochemistry results suggest that when compared with rats in a control group, rats in an experimental group showed significant coexpression of Cdk5/VGLUT2 in small and medium-sized neuronal cells of the dorsal root ganglion (DRG) and spinal cord between days 1 and 3 following subcutaneous injection of CFA. Moreover, our study revealed that the expression of VGLUT2 protein in DRG and spinal cord was remarkably increased between days 1 and 3 following CFA injection. Additionally, p25 but not p35, a activator of Cdk5, protein was significantly increased and reduced by roscovitine. The increased expressions of VGLUT2 protein was significantly reduced by roscovitine as well. Our study showed that VGLUT2/Cdk5 signaling pathway contributed to the inflammatory pain medicated by Cdk5/p25.


Sign in / Sign up

Export Citation Format

Share Document