Structural connectivity alterations in chronic and episodic migraine: A diffusion magnetic resonance imaging connectomics study

Cephalalgia ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 367-383 ◽  
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L Guerrero ◽  
Santiago Aja-Fernández ◽  
Margarita Rodríguez ◽  
...  

Objective To identify possible structural connectivity alterations in patients with episodic and chronic migraine using magnetic resonance imaging data. Methods Fifty-four episodic migraine, 56 chronic migraine patients and 50 controls underwent T1-weighted and diffusion-weighted magnetic resonance imaging acquisitions. Number of streamlines (trajectories of estimated fiber-tracts), mean fractional anisotropy, axial diffusivity and radial diffusivity were the connectome measures. Correlation analysis between connectome measures and duration and frequency of migraine was performed. Results Higher and lower number of streamlines were found in connections involving regions like the superior frontal gyrus when comparing episodic and chronic migraineurs with controls ( p < .05 false discovery rate). Between the left caudal anterior cingulate and right superior frontal gyri, more streamlines were found in chronic compared to episodic migraine. Higher and lower fractional anisotropy, axial diffusivity, and radial diffusivity were found between migraine groups and controls in connections involving regions like the hippocampus. Lower radial diffusivity and axial diffusivity were found in chronic compared to episodic migraine in connections involving regions like the putamen. In chronic migraine, duration of migraine was positively correlated with fractional anisotropy and axial diffusivity. Conclusions Structural strengthening of connections involving subcortical regions associated with pain processing and weakening in connections involving cortical regions associated with hyperexcitability may coexist in migraine.

2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2003 ◽  
Vol 182 (5) ◽  
pp. 439-443 ◽  
Author(s):  
J. Burns ◽  
D. Job ◽  
M. E. Bastin ◽  
H. Whalley ◽  
T. Macgillivray ◽  
...  

BackgroundThere is growing evidence that schizophrenia is a disorder of cortical connectivity Specifically, frontotemporal and frontoparietal connections are thought to be functionally impaired. Diffusion tensor magnetic resonance imaging (DT–MRI) is a technique that has the potential to demonstrate structural disconnectivity in schizophrenia.AimsTo investigate the structural integrity of frontotemporal and frontoparietal white matter tracts in schizophrenia.MethodThirty patients with DSM–IV schizophrenia and thirty matched control subjects underwent DT–MRI and structural MRI. Fractional anisotropy – an index of the integrity of white matter tracts – was determined in the uncinate fasciculus, the anterior cingulum and the arcuate fasciculus and analysed using voxel-based morphometry.ResultsThere was reduced fractional anisotropy in the left uncinate fasciculus and left arcuate fasciculus in patients with schizophrenia compared with controls.ConclusionsThe findings of reduced white matter tract integrity in the left uncinate fasciculus and left arcuate fasciculus suggest that there is frontotemporal and frontoparietal structural disconnectivity in schizophrenia.


2009 ◽  
Vol 15 (3) ◽  
pp. 383-393 ◽  
Author(s):  
HELEN M. GENOVA ◽  
FRANK G. HILLARY ◽  
GLENN WYLIE ◽  
BART RYPMA ◽  
JOHN DELUCA

AbstractAlthough it is known that processing speed deficits are one of the primary cognitive impairments in multiple sclerosis (MS), the underlying neural mechanisms responsible for impaired processing speed remain undetermined. Using BOLD functional magnetic resonance imaging, the current study compared the brain activity of 16 individuals with MS to 17 healthy controls (HCs) during performance of a processing speed task, a modified version of the Symbol Digit Modalities Task. Although there were no differences in performance accuracy, the MS group was significantly slower than HCs. Although both groups showed similar activation involving the precentral gyrus and occipital cortex, the MS showed significantly less cerebral activity than HCs in bilateral frontal and parietal regions, similar to what has been reported in aging samples during speeded tasks. In the HC group, processing speed was mediated by frontal and parietal regions, as well as the cerebellum and thalamus. In the MS group, processing speed was mediated by insula, thalamus and anterior cingulate. It therefore appears that neural networks involved in processing speed differ between MS and HCs, and our findings are similar to what has been reported in aging, where damage to both white and gray matter is linked to processing speed impairments (JINS, 2009, 15, 383–393).


2012 ◽  
Vol 117 (4) ◽  
pp. 868-877 ◽  
Author(s):  
Marieke Niesters ◽  
Najmeh Khalili-Mahani ◽  
Christian Martini ◽  
Leon Aarts ◽  
Joop van Gerven ◽  
...  

Background The influence of psychoactive drugs on the central nervous system has been investigated with positron emission tomography and task-related functional magnetic resonance imaging. However, it is not known how these drugs affect the intrinsic large-scale interactions of the brain (resting-state functional magnetic resonance imaging connectivity). In this study, the effect of low-dose S(+)-ketamine on intrinsic brain connectivity was investigated. Methods Twelve healthy, male volunteers received a 2-h intravenous S(+)-ketamine infusion (first hour 20 mg/70 kg, second hour 40 mg/70 kg). Before, during, and after S(+)-ketamine administration, resting-state brain connectivity was measured. In addition, heat pain tests were performed between imaging sessions to determine ketamine-induced analgesia. A mixed-effects general linear model was used to determine drug and pain effects on resting-state brain connectivity. Results Ketamine increased the connectivity most importantly in the cerebellum and visual cortex in relation to the medial visual network. A decrease in connectivity was observed in the auditory and somatosensory network in relation to regions responsible for pain sensing and the affective processing of pain, which included the amygdala, insula, and anterior cingulate cortex. Connectivity variations related to fluctuations in pain scores were observed in the anterior cingulate cortex, insula, orbitofrontal cortex, and the brainstem, regions involved in descending inhibition of pain. Conclusions Changes in connectivity were observed in the areas that explain ketamine's pharmacodynamic profile with respect to analgesia and psychedelic and other side effects. In addition, pain and ketamine changed brain connectivity in areas involved in endogenous pain modulation.


2010 ◽  
Vol 22 (2) ◽  
pp. 362-376 ◽  
Author(s):  
Claus Lamm ◽  
Andrew N. Meltzoff ◽  
Jean Decety

Previous research on the neural underpinnings of empathy has been limited to affective situations experienced in a similar way by an observer and a target individual. In daily life we also interact with people whose responses to affective stimuli can be very different from our own. How do we understand the affective states of these individuals? We used functional magnetic resonance imaging to assess how participants empathize with the feelings of patients who reacted with no pain to surgical procedures but with pain to a soft touch. Empathy for pain of these patients activated the same areas (insula, medial/anterior cingulate cortex) as empathy for persons who responded to painful stimuli in the same way as the observer. Empathy in a situation that was aversive only for the observer but neutral for the patient recruited areas involved in self–other distinction (dorsomedial prefrontal cortex) and cognitive control (right inferior frontal cortex). In addition, effective connectivity between the latter and areas implicated in affective processing was enhanced. This suggests that inferring the affective state of someone who is not like us can rely upon the same neural structures as empathy for someone who is similar to us. When strong emotional response tendencies exist though, these tendencies have to be overcome by executive functions. Our results demonstrate that the fronto-cortical attention network is crucially involved in this process, corroborating that empathy is a flexible phenomenon which involves both automatic and controlled cognitive mechanisms. Our findings have important implications for the understanding and promotion of empathy, demonstrating that regulation of one's egocentric perspective is crucial for understanding others.


2018 ◽  
Vol 3 (2) ◽  
pp. 59-64
Author(s):  
Xiping Liu ◽  
Yasutomo Imai ◽  
Yan Zhou ◽  
Sebastian Yu ◽  
Rupeng Li ◽  
...  

Functional connectivity magnetic resonance imaging (fcMRI), a specific form of MRI imaging, quantitatively assesses connectivity between brain regions that share functional properties. Functional connectivity magnetic resonance imaging has already provided unique insights into changes in the brain in patients with conditions such as depression and pain and symptoms that have been reported by patients with psoriasis and are known to impact quality of life. To identify the central neurological impact of psoriasiform inflammation of the skin, we applied fcMRI analysis to mice that had been topically treated with the Toll-like receptor agonist, imiquimod (IMQ) to induce psoriasiform dermatitis. Brain insula regions, due to their suggested role in stress, were chosen as seed regions for fcMRI analysis. Mouse ear and head skin developed psoriasiform epidermal thickening (up to 4-fold, P < .05) and dermal inflammation after 4 days of topical treatment with IMQ. After fcMRI analysis, IMQ-treated mice showed significantly increased insula fc with wide areas throughout the brain, including, but not limited to, the somatosensory cortex, anterior cingulate cortex, and caudate putamen ( P < .005). This reflects a potential central neurological impact of IMQ-induced psoriasis-like skin inflammation. These data indicate that fcMRI may be valuable tool to quantitatively assess the neurological impact of skin inflammation in patients with psoriasis.


Sign in / Sign up

Export Citation Format

Share Document