Machine Learning Approach to Short-Term Traffic Congestion Prediction in a Connected Environment

Author(s):  
Amr Elfar ◽  
Alireza Talebpour ◽  
Hani S. Mahmassani

Traffic congestion is a complex phenomenon triggered by a combination of multiple interacting factors. One of the main factors is the disturbances caused by individual vehicles, which cannot be identified in aggregate traffic data. Advances in vehicle wireless communications present new opportunities to measure traffic perturbations at the individual vehicle level. The key question is whether it is possible to find the relationship between these perturbations and shockwave formation and utilize this knowledge to improve the identification and prediction of congestion formation. Accordingly, this paper explores the use of three machine learning techniques, logistic regression, random forests, and neural networks, for short-term traffic congestion prediction using vehicle trajectories available through connected vehicles technology. Vehicle trajectories provided by the Next Generation SIMulation (NGSIM) program were utilized in this study. Two types of predictive models were developed in this study: (1) offline models which are calibrated based on historical data and are updated (re-trained) whenever significant changes occur in the system, such as changes/updates to the infrastructure, and (2) online models which are calibrated using historical data and updated regularly using real-time information on prevailing traffic conditions obtained through V2V/V2I communications. Results show that the accuracy of the models built in this study to predict the congested traffic state can reach 97%. The models presented can be used in various potential applications including improving road safety by warning drivers of upcoming traffic slowdowns and improving mobility through integration with traffic control systems.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mahmuda Akhtar ◽  
Sara Moridpour

In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.


Machine Learning Techniques and Big Data analytics are two central points of data science. Big Data is important for organizations to gain insights into it and machine learning techniques are one of the substantial assets for analyzing a massive amount of data. In this paper, a framework has been proposed to improve the short term stock trend prediction accuracy using Logistic Regression model by means of qualitative and quantitative data. This paper makes a comprehensive survey of stock market trend prediction with the accumulation of various data sources by applying machine learning techniques and by using big data analytics approach. The model has been implemented in Big data Framework with Hadoop and Apache Spark. For qualitative data Tweets sentiments and news sentiments has been taken in to account and for quantitative data Google trends and historical data are considered. The proposed system has enhanced the prediction accuracy about 3-4 % in comparison to existing models by supplying Google trend as input data in addition to market sentiments and historical data. The implemented model can help the investors to take short term decisions to make money in the security market and the survey would help in finding the most effective resources which overly influence the stock prices.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Giovanni Semeraro ◽  
Pierpaolo Basile ◽  
Marco de Gemmis ◽  
Pasquale Lops

Exploring digital collections to find information relevant to a user’s interests is a challenging task. Information preferences vary greatly across users; therefore, filtering systems must be highly personalized to serve the individual interests of the user. Algorithms designed to solve this problem base their relevance computations on user profiles in which representations of the users’ interests are maintained. The main focus of this chapter is the adoption of machine learning to build user profiles that capture user interests from documents. Profiles are used for intelligent document filtering in digital libraries. This work suggests the exploiting of knowledge stored in machine-readable dictionaries to obtain accurate user profiles that describe user interests by referring to concepts in those dictionaries. The main aim of the proposed approach is to show a real-world scenario in which the combination of machine learning techniques and linguistic knowledge is helpful to achieve intelligent document filtering.


2020 ◽  
Vol 10 (11) ◽  
pp. 764
Author(s):  
Kyeong-Rae Kim ◽  
Hyeun Sung Kim ◽  
Jae-Eun Park ◽  
Seung-Yeon Kang ◽  
So-Young Lim ◽  
...  

Background: In this study, based on machine-learning technology, we aim to develop a predictive model of the short-term prognosis of Korean patients who received spinal stenosis surgery. Methods: Using the data obtained from 112 patients with spinal stenosis admitted at N hospital from February to November, 2019, a predictive analysis was conducted for the pain index, reoperation, and surgery time. Results: Results show that the predicted area under the curve was 0.803, 0.887, and 0.896 for the pain index, reoperation, and surgery time, respectively, thereby indicating the accuracy of the model. Conclusion: This study verified that the individual characteristics of the patient and treatment characteristics during surgery enable a prediction of the patient prognosis and validate the accuracy of the approach. Further studies should be conducted to extend the scope of this research by incorporating a larger and more accurate dataset.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5213 ◽  
Author(s):  
Donato Impedovo ◽  
Fabrizio Balducci ◽  
Vincenzo Dentamaro ◽  
Giuseppe Pirlo

Automatic traffic flow classification is useful to reveal road congestions and accidents. Nowadays, roads and highways are equipped with a huge amount of surveillance cameras, which can be used for real-time vehicle identification, and thus providing traffic flow estimation. This research provides a comparative analysis of state-of-the-art object detectors, visual features, and classification models useful to implement traffic state estimations. More specifically, three different object detectors are compared to identify vehicles. Four machine learning techniques are successively employed to explore five visual features for classification aims. These classic machine learning approaches are compared with the deep learning techniques. This research demonstrates that, when methods and resources are properly implemented and tested, results are very encouraging for both methods, but the deep learning method is the most accurately performing one reaching an accuracy of 99.9% for binary traffic state classification and 98.6% for multiclass classification.


Sign in / Sign up

Export Citation Format

Share Document