Development of Combined Pile-CPT Methods for Estimating the Ultimate Axial Capacity of PPC Piles Driven in Different Soil Categories in Louisiana

Author(s):  
Murad Y. Abu-Farsakh ◽  
Mohsen Amirmojahedi ◽  
George Z. Voyiadjis

The cone and piezocone penetration tests (CPT, PCPT) have been widely acknowledged as useful in-situ testing tools for subsurface investigation, characterization of soil type, and evaluation of different soil properties. Because of similarity between the cone and pile, the evaluation of axial pile capacity was one of initial applications of the CPT/PCPT. A previous study conducted by the authors on 80 pile load tests of precast prestressed concrete (PPC) piles demonstrated that some pile-CPT methods are able to predict the ultimate axial pile capacity with better accuracy than other methods. These methods include: Schmertmann, De Ruiter and Beringen, Laboratoire Central des Ponts et Chaussées (LCPC), European Regional Technical Committee 3 (ERTC3), University of Western Australia (UWA), probabilistic, and University of Florida (UF) methods. The results of these seven pile-CPT methods were compared and their performance was examined for different soil categories where different percentages of pile capacity contribution is because of sandy layers. The log-normal distribution of the estimated to measured pile capacity for these pile-CPT methods was adopted to develop combined pile-CPT methods that optimize the estimation accuracy of axial pile capacity in different soil categories. Reliability analysis using Monte Carlo Simulation (MCS) was used to evaluate the resistance factors ( ϕ) and efficiency ( ϕ/ λR) of the individual and combined pile-CPT methods. Results of analysis of 80 pile load tests demonstrated the advantage of using the combined pile-CPT methods over the individual methods in relation to improving the accuracy of estimating the ultimate axial pile capacity and having better resistance factors.

1996 ◽  
Vol 33 (1) ◽  
pp. 23-41 ◽  
Author(s):  
Marcio SS Almeida ◽  
Fernando AB Danziger ◽  
Tom Lunne

Results of 43 load tests on driven and jacked piles performed at eight calyey sites have been back-analysed using piezocone test data. A method to evaluate the axial capacity of piles has been proposed in which the pile unit skin friction and the unit end bearing resistance are computed from the net corrected cone resistance, qnet. Correlation factors between piezocone and pile load tests were back-calculated using this approach. As most of the pile tests performed were tension tests, special emphasis was given to the evaluation of the pile unit skin friction. Key words: clay, pile, piezocone, cone penetration test, axial pile capacity, skin friction.


Author(s):  
Sungmin Yoon ◽  
Murad Y. Abu-Farsakh ◽  
Ching Tsai ◽  
Zhongjie Zhang

The evaluation of axial load resistance of piles driven into soft Louisiana soils based on reliability theory is presented. Forty-two square precast, prestressed, concrete piles that were tested to failure were included in the investigation. The predictions of pile resistances were based on static analysis (α-method for clay and Nordlund method for sand) and three cone penetration test (CPT) direct methods: the Schmertmann, De Ruiter–Beringen, and Bustamante–Gianeselli methods. In addition, dynamic measurements with signal matching analysis of pile resistances using CAPWAP, which is based on the measured force and velocity signals obtained near the pile top during driving, were evaluated. The Davisson and modified Davisson interpretation methods were used to determine the measured ultimate load-carrying resistances from pile load tests. The predicted ultimate pile resistances obtained by using the different prediction methods were compared with the measured resistances determined from pile load tests. Statistical analyses were carried out to evaluate the capability of the prediction design methods to estimate the measured ultimate pile resistance of driven piles. The results showed that the static method overpredicted the pile resistance, whereas the dynamic measurement with signal matching analysis (CAPWAP end-of-driving and 14-day beginning-of-restrike) underpredicted the pile resistance. Of the three direct CPT methods, the De Ruiter–Beringen method was the most consistent prediction method with the lowest coefficient of variation. Reliability-based analyses, by using the first-order, second-moment method, also were conducted to calibrate the resistance factors (φ) for the investigated pile design methods. The resistance factors for different design methods were determined and compared with AASHTO recommendation values. The calibration showed that De Ruiter–Beringen method has a higher resistance factor (φDe Ruiter = 0.64) than the other two CPT methods.


2011 ◽  
Vol 243-249 ◽  
pp. 4402-4407
Author(s):  
Yong Hong Miao ◽  
Guo Jun Cai ◽  
Song Yu Liu

Six methods to determine axial pile capacity directly based on piezocone penetration test (CPTU) data are presented and evaluated. Analyses and evaluation were conducted on three types piles that were failed during pile load testing. The CPT methods, as well as the CPTU methods, were used to estimate the load carrying capacities of the investigated piles (Qp ). Pile load test were used to determine the measured load carrying capacities (Qm). The pile capacities determined using the different methods were compared with the measured pile capacities obtained from the pile load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp /Qm. Results of the analyses showed that the best methods for determining pile capacity are the CPTU methods.


2020 ◽  
Vol 53 (12) ◽  
pp. 5531-5543
Author(s):  
John W. Barrett ◽  
Luke J. Prendergast

AbstractIn this paper, an empirical relationship between the Unconfined Compressive Strength (UCS) of intact rock and the unit shaft resistance of piles penetrating rock is investigated. A growing number of civil engineering projects are utilizing steel piles driven into rock where a significant portion of the pile capacity is derived from the shaft resistance. Despite the growing number of projects utilizing the technology, little to no guidance is offered in the literature as to how the shaft resistance is to be calculated for such piles. A database has been created for driven piles that penetrate bedrock. The database consists of 42 pile load tests of which a majority are steel H-piles. The friction fatigue model is applied to seven of the pile load tests for which sufficient UCS data exists in order to develop an empirical relation. The focus of this paper is on case histories that include driven pipe piles with at least 2 m penetration into rock.


2017 ◽  
Vol 54 (7) ◽  
pp. 968-986 ◽  
Author(s):  
Jared Harnish ◽  
M. Hesham El Naggar

Large-diameter helical piles are utilized increasingly to support heavy structures. Both the magnitude of the required installation torque and the pile capacity can be directly attributed to the soil shearing resistance developed over the embedded area of the pile including the shaft and helical plates. Hence, the pile capacity can be correlated to installation torque. Such correlations are widely used in the helical pile industry as a means for quality control and quality assurance. In the current study, a total of 10 test piles were installed while monitoring the installation torque continuously with depth. The recorded installation torque profiles were demonstrated to be accurate and repeatable. Field pile load tests were conducted and their results were analyzed to determine the interpreted ultimate capacity of the test piles. The results demonstrate that the ultimate capacity of large-diameter helical piles can be interpreted from pile load test data employing the failure criteria proposed by Elkasabgy and El Naggar in 2015 and Fuller and Hoy in 1970. The measured installation torque and corresponding ultimate capacity values were employed to define torque–capacity correlation (Kt) based on embedded pile area. It was demonstrated that the proposed Kt is suitable for large-diameter helical piles.


1999 ◽  
Vol 36 (3) ◽  
pp. 418-429 ◽  
Author(s):  
M Abdel-Meguid ◽  
M H El Naggar ◽  
J Q Shang

Improvement of the shear strength of soft clayey soils around steel pipe piles using high-voltage electrokinetics is investigated in the present study. The experimental setup of a large-scale testing facility is described. Four model piles were installed in two identical cylinders filled with simulated marine sediment. Five electrically insulated electrodes were installed close to the piles to apply a high-voltage electric field in the test cylinder. Negative direct current voltages of -20, -30, and -10 kV were applied in three phases, respectively, for 33 days in the treatment cylinder. Axial compression and pullout pile load tests were performed and the results were compared for both cylinders after each phase of treatment. The pile response is presented in terms of the experimental load deflection curves. It is observed that the axial capacity was increased 30, 29, and 8% after the first, second, and third treatment phases, respectively. The pullout capacity was increased due to the treatment by 11, 23, and 12% after the first, second, and third treatment phases, respectively. Further development of this technique may provide potential solutions for the improvement of soft marine clays, and ultimately it could be applied in the field to rehabilitate existing offshore foundations.Key words: electrokinetics, piles, marine clays, soil improvement, bearing capacity, axial loading.


2001 ◽  
Vol 38 (2) ◽  
pp. 364-377
Author(s):  
Ahmed Shlash Alawneh ◽  
Osama Nusier ◽  
Abdullah I Husein Malkawi ◽  
Mustafa Al-Kateeb

In this paper, empirical formulae were developed between the well-known pile bearing capacity factors (Nq and β) and parameters which include friction angle of sand, relative density, average effective vertical stress, and deformability of the soil below the pile toe. The developed empirical formulae were totally based on a database comprised of 28 well-documented compressive pile load tests collected exclusively from geotechnical literature. The actual measurements of shaft and end-bearing resistances of each pile in the database were adjusted to account for post-driving residual loads. Calculation of pile bearing capacity factors (Nq and β) was based on the adjusted shaft and end-bearing resistances rather than the actual unadjusted measured resistances for residual loads. Comparison of predicted and measured compressive capacity of an independent database comprised of 18 pile load tests showed that the developed formulae yield a reasonably accurate estimate of compressive pile capacity in cohesionless soils.Key words: driven piles, residual load, toe resistance, shaft resistance.


2005 ◽  
Vol 42 (4) ◽  
pp. 1086-1093 ◽  
Author(s):  
L M Zhang ◽  
D Q Li ◽  
Wilson H Tang

The failure of a pile is always defined by a certain failure criterion. Several different failure criteria are commonly used, and the pile capacity values associated with each of these failure criteria can be considerably different. For the sake of international harmonization, it is necessary to calibrate the reliability levels associated with various failure criteria and factors for loads and resistances. This paper aims to evaluate the effects of failure criteria and factors for loads and resistances on the reliability of single bored piles. The bias arising from failure criteria is described by a bias factor, which can easily be accommodated in a reliability analysis. A comprehensive database of static load tests of bored piles is utilized to evaluate the bias associated with several failure criteria. Five limit-state design codes for piles are investigated to illustrate the effect of the bias from failure criteria, the effect of factors for loads and resistances, and their combined effect. The results indicate that the bias from failure criteria has a significant influence on the reliability of piles. Similarly, the use of different factors for loads and resistances in various design codes can also cause considerable differences in the calculated reliability. As a result of these effects, the actual reliability levels of any two design codes, assuming the same nominal target reliability index, can differ considerably.Key words: bored piles, pile capacity, failure criterion, reliability analysis, load factors, resistance factors.


2019 ◽  
Vol 97 ◽  
pp. 04029 ◽  
Author(s):  
Jakub Rainer

Current assessment of foundation pile bearing capacity during driving may considerably improve operational reliability in terms of loads to be transferred. It also enables proper design and trial examinations by focusing attention on piles with atypical driving characteristics. The paper presents the method applicable to assess the bearing capacity of prefabricated driven piles and provides analysis of likelihood of this assessment by the example of numerous prefabricated piles documented by piling reports and results of static pile load tests to the extent allowing to determining the limit bearing capacity. The results attained could be the basis to determine respective safety factors in pile design based on driving resistance analysis.


Sign in / Sign up

Export Citation Format

Share Document