Reliability of bored pile foundations considering bias in failure criteria

2005 ◽  
Vol 42 (4) ◽  
pp. 1086-1093 ◽  
Author(s):  
L M Zhang ◽  
D Q Li ◽  
Wilson H Tang

The failure of a pile is always defined by a certain failure criterion. Several different failure criteria are commonly used, and the pile capacity values associated with each of these failure criteria can be considerably different. For the sake of international harmonization, it is necessary to calibrate the reliability levels associated with various failure criteria and factors for loads and resistances. This paper aims to evaluate the effects of failure criteria and factors for loads and resistances on the reliability of single bored piles. The bias arising from failure criteria is described by a bias factor, which can easily be accommodated in a reliability analysis. A comprehensive database of static load tests of bored piles is utilized to evaluate the bias associated with several failure criteria. Five limit-state design codes for piles are investigated to illustrate the effect of the bias from failure criteria, the effect of factors for loads and resistances, and their combined effect. The results indicate that the bias from failure criteria has a significant influence on the reliability of piles. Similarly, the use of different factors for loads and resistances in various design codes can also cause considerable differences in the calculated reliability. As a result of these effects, the actual reliability levels of any two design codes, assuming the same nominal target reliability index, can differ considerably.Key words: bored piles, pile capacity, failure criterion, reliability analysis, load factors, resistance factors.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jialin Zhou ◽  
Xin Zhang ◽  
Hongsheng Jiang ◽  
Chunhao Lyu ◽  
Erwin Oh

This paper examines shaft and base grouted concrete piles by conducting vertical static load tests (SLTs) and dynamic load tests. Three concrete piles with shaft and base grouting, with base grouting only, and without grouting techniques were selected, and compressive SLTs were conducted. Two piles with grouting were also assessed with dynamic load tests. Another two uplift SLTs were conducted to one shaft and base grouted pile and one pile without grouting. Traditional presentations were provided to check whether the bored piles reached the design requirement. Interpretations of test results were also provided to determine the ultimate pile capacity. Results from these 5 SLT programs indicated that double-tangent and DeBeer's methods are close to each other, and Chin's method overestimates the pile capacity. Comparison of the results from the SLTs and dynamic load tests shows that the results from Chin's method are close to dynamic results, and Mazurkiewicz's method overestimates for friction resistance. The results also demonstrate that base and shaft grouted pile and base grouted pile increase by 9.82% and 2.89% in compressive capacity, respectively, and compared to the uplift SLTs; there is a 15.7% increment in pile capacity after using base and shaft grouting technology.



2017 ◽  
Vol 54 (7) ◽  
pp. 968-986 ◽  
Author(s):  
Jared Harnish ◽  
M. Hesham El Naggar

Large-diameter helical piles are utilized increasingly to support heavy structures. Both the magnitude of the required installation torque and the pile capacity can be directly attributed to the soil shearing resistance developed over the embedded area of the pile including the shaft and helical plates. Hence, the pile capacity can be correlated to installation torque. Such correlations are widely used in the helical pile industry as a means for quality control and quality assurance. In the current study, a total of 10 test piles were installed while monitoring the installation torque continuously with depth. The recorded installation torque profiles were demonstrated to be accurate and repeatable. Field pile load tests were conducted and their results were analyzed to determine the interpreted ultimate capacity of the test piles. The results demonstrate that the ultimate capacity of large-diameter helical piles can be interpreted from pile load test data employing the failure criteria proposed by Elkasabgy and El Naggar in 2015 and Fuller and Hoy in 1970. The measured installation torque and corresponding ultimate capacity values were employed to define torque–capacity correlation (Kt) based on embedded pile area. It was demonstrated that the proposed Kt is suitable for large-diameter helical piles.



2021 ◽  
Author(s):  
Alexandre P. R. P. Almeida

The design practice of micropiles in Ontario soils under the ultimate limit state was improved through both statistical and reliability analyses of a database of 40 micropile load tests. Micropile design is extremely dependent on engineering experience and judgement due to the lack of an accurate estimation of the bond strength. The FHWA manual of micropiles only provides wide ranges of bond strength in different ground conditions. Micropile load tests were conducted by Keller Foundations Ltd and collected for this study. From a statistical analysis, Fuller and Hoy’s method was selected as the best method to estimate the failure load from non-failed tests. Adjusted parameters were given to predict the bond strength of micropiles. A method was proposed to estimate the contributions from the cased length and the tip to the total resistance. In the end, a reliability analysis was conducted and the resistance factors were recalibrated.



2021 ◽  
Author(s):  
Alexandre P. R. P. Almeida

The design practice of micropiles in Ontario soils under the ultimate limit state was improved through both statistical and reliability analyses of a database of 40 micropile load tests. Micropile design is extremely dependent on engineering experience and judgement due to the lack of an accurate estimation of the bond strength. The FHWA manual of micropiles only provides wide ranges of bond strength in different ground conditions. Micropile load tests were conducted by Keller Foundations Ltd and collected for this study. From a statistical analysis, Fuller and Hoy’s method was selected as the best method to estimate the failure load from non-failed tests. Adjusted parameters were given to predict the bond strength of micropiles. A method was proposed to estimate the contributions from the cased length and the tip to the total resistance. In the end, a reliability analysis was conducted and the resistance factors were recalibrated.



2019 ◽  
Vol 56 (12) ◽  
pp. 1816-1831 ◽  
Author(s):  
Pouyan Asem ◽  
Paolo Gardoni

This paper presents analyses of the measured peak side resistance of rock sockets constructed in weak claystone, shale, limestone, siltstone, and sandstone. The peak side resistance is obtained from in situ axial load tests on drilled shafts, anchors, and plugs. The parameters that affect the development of peak side resistance are determined using in situ load test data. It is found that peak side resistance increases with the unconfined compressive strength and deformation modulus of the weak rock, and decreases with the increase in length of the shear surface along the rock socket sidewalls. The increase in socket diameter also slightly decreases the peak side resistance. Additionally, it is found that the initial normal stresses do not significantly affect the measured peak side resistance in the in situ load tests. The in situ load test data are used to develop an empirical design equation for determination of the peak side resistance. The proposed model for peak side resistance and the reliability analysis are used to determine the corresponding resistance factors for use in the load and resistance factor design framework for assessment of the strength limit state.



1987 ◽  
Vol 24 (1) ◽  
pp. 145-149 ◽  
Author(s):  
V. V. R. N. Sastry ◽  
G. G. Meyerhof

The lateral soil pressure distribution, pile capacity, and displacements of instrumented single rigid bored piles subjected to pure moment and horizontal load have been investigated. The influence of method of pile installation on the above parameters is studied by comparing the behaviour of bored piles with that of jacked piles. It was concluded that the method of installation has practically no effect so far as the net lateral soil pressures and pile capacity are concerned, but the displacements may be up to three times larger for a bored pile than for a jacked pile under working loads. Key words: clay, horizontal load, installation, model test, moment, pile.



2010 ◽  
Vol 163-167 ◽  
pp. 3517-3522
Author(s):  
Xiao Gui Wen ◽  
An Sun ◽  
Hui Ming Wu ◽  
Wen Tao Wang

Bored pile is one of the most widely used foundation forms in civil engineering. Relationship between pile quality and its’ bearing capacity is seldom been discussed. This paper introduces 8 bored piles in one storage tank project in Ningbo, of which 4 piles are done vertical load tests; the other four are done lateral load tests. Combined with their quality, the results reveal that when load is small, pile quality has much influence on pile bearing capacity. As soon as load is large enough to transfer to pile bottom, quality of concrete at pile bottom becomes the main factor that impacts pile vertical capacity, meanwhile pile horizontal bearing capacity mainly depends on pile length. Post-grouting is done to improve pile quality. It raises pile’s bearing capacity while reducing differential settlement at the same time.



2011 ◽  
Vol 255-260 ◽  
pp. 3421-3425
Author(s):  
Shi Bin Ma ◽  
Kai Wang ◽  
Yang Feng Wu ◽  
Lian Yu Wei ◽  
Ming Wei Zhang

The design of asphalt pavements in china is currently based on the multilayered elastic method, which is analytical in nature and yields stresses, strains, and deflections in the pavement system for a particular loading condition and pavement geometry, which are compared with established failure criteria to determine the performance of the given pavement. This design approaches is deterministic. In this paper, typical asphalt pavement structure reliability analysis was performed in which factors that affect pavement reliability regarded as input random , pavement surface deflection, layers of bottom stress and limit state function regarded as output variables , by reliability tool infinite element analysis, base on Monte Carlo’s Latin hypercube sampling method.At last the paper pertinently offered decision basis for improve the reliability of pavement structure and important reference values for drafting and selecting of asphalt pavement design parameters through calculating the reliability of pavement structure, sensitivity analysis of the design parameters is made.



Author(s):  
Murad Y. Abu-Farsakh ◽  
Mohsen Amirmojahedi ◽  
George Z. Voyiadjis

The cone and piezocone penetration tests (CPT, PCPT) have been widely acknowledged as useful in-situ testing tools for subsurface investigation, characterization of soil type, and evaluation of different soil properties. Because of similarity between the cone and pile, the evaluation of axial pile capacity was one of initial applications of the CPT/PCPT. A previous study conducted by the authors on 80 pile load tests of precast prestressed concrete (PPC) piles demonstrated that some pile-CPT methods are able to predict the ultimate axial pile capacity with better accuracy than other methods. These methods include: Schmertmann, De Ruiter and Beringen, Laboratoire Central des Ponts et Chaussées (LCPC), European Regional Technical Committee 3 (ERTC3), University of Western Australia (UWA), probabilistic, and University of Florida (UF) methods. The results of these seven pile-CPT methods were compared and their performance was examined for different soil categories where different percentages of pile capacity contribution is because of sandy layers. The log-normal distribution of the estimated to measured pile capacity for these pile-CPT methods was adopted to develop combined pile-CPT methods that optimize the estimation accuracy of axial pile capacity in different soil categories. Reliability analysis using Monte Carlo Simulation (MCS) was used to evaluate the resistance factors ( ϕ) and efficiency ( ϕ/ λR) of the individual and combined pile-CPT methods. Results of analysis of 80 pile load tests demonstrated the advantage of using the combined pile-CPT methods over the individual methods in relation to improving the accuracy of estimating the ultimate axial pile capacity and having better resistance factors.



Sign in / Sign up

Export Citation Format

Share Document