3D-Printing of Ultra-High-Performance Concrete for Robotic Bridge Construction

Author(s):  
Ali Javed ◽  
Islam M. Mantawy ◽  
Atorod Azizinamini

Automation and robotics are integral parts of many industries but their potential for field implementation has not been significantly recognized by the construction industry. This is mainly attributed to conventional construction and design practices which undermine the benefits offered by these new technologies such as repetitions, precision, time savings, and increased safety. There is a need for advanced materials and 3D-printing systems which are capable of constructing structural elements with performance that emulates conventionally cast elements. This study presents a detailed framework and performance metrics for materials and 3D-printing systems for bridge applications. In addition, a study was carried out on ultra-high-performance concrete (UHPC) which showed sufficient extrudability and workability for 3D-printing applications. A 3D-printing system was developed for 3D-printing of continuous additive layers of UHPC with accelerated heat curing. Accelerated heat curing was used to enhance buildability, expedite the printing of the UHPC layers, and maximize the number of printed layers within the material open time. The effect of heat curing on material properties was also evaluated to obtain the optimal temperature to satisfy compressive strength requirements. This research effort aims to augment automated construction techniques and develop solutions to extend the applications of accelerated bridge construction.

2017 ◽  
Vol 131 ◽  
pp. 767-774 ◽  
Author(s):  
Wengui Li ◽  
Zhengyu Huang ◽  
Gongqiu Hu ◽  
Wen Hui Duan ◽  
Surendra P. Shah

2020 ◽  
Vol 10 (20) ◽  
pp. 7107
Author(s):  
Pham Sy Dong ◽  
Nguyen Van Tuan ◽  
Le Trung Thanh ◽  
Nguyen Cong Thang ◽  
Viet Hung Cu ◽  
...  

This research investigated the effect of fly ash content on the compressive strength development of ultra-high-performance concrete (UHPC) at different curing conditions, i.e., the standard curing condition and the heat curing. A total of 20 mixtures were prepared to cast specimens to measure the compressive strength at different ages from 3 days to 180 days. Additionally, 300 specimens were prepared to estimate the appropriate heat curing period at the early ages in terms of enhancing the 28-day compressive strength of UHPC with high content of fly ash (FA). From the regression analysis using test data, empirical equations were formulated to assess the compressive strength development of UHPC considering the FA content and maturity function. Test results revealed that the preference of the addition of FA for enhancing the compressive strength of UHPC requires the early heat curing procedure which can be recommended as at least 2 days under 90 °C. Moreover, the compressive strength of UHPC with FA under heat curing mostly reached its 28-day strength within 3 days. The proposed models based on the fib 2010 model can be a useful tool to reliably assess the compressive strength development of UHPC with high-volume fly ash (HVFA) (up to 70% fly ash content) under a heat curing condition that possesses a different performance from that of normal- and high-strength concrete. When 50% of the cement content was replaced by FA, the embodied CO2 emission for UHPC mixture reduced up to approximately 50%, which is comparable to the CO2 emission calculated from the conventional normal-strength concrete.


2020 ◽  
Vol 16 (1) ◽  
pp. 26-35
Author(s):  
Carlos Eduardo Tino Balestra ◽  
Jennifer Stephane Ozelame ◽  
Gustavo Savaris

RESUMO: A exigência de materiais com desempenho superior aos utilizados usualmente na construção civil impulsiona pesquisas que visam o desenvolvimento de novas tecnologias. Neste contexto, surgem os concretos de ultra alto desempenho reforçados com fibras (UHPFRC), que se destacam pelas elevadas resistências à compressão e à tração e maior ductilidade em relação a um concreto convencional. O presente trabalho teve como objetivo principal avaliar experimentalmente a resistência à compressão e comportamento pós ruptura de UHPFRC com diferentes tipos e dosagens de fibras, utilizando materiais disponíveis no mercado brasileiro, visando o emprego deste material nos processos construtivos atuais. A partir de um traço de concreto de ultra alto desempenho foram definidas misturas de UHPFRC com fibras de aço e de fibras de polietileno utilizando volumes de 0,5% e 1% de fibras. Os resultados obtidos foram comparados a um concreto de referência sem fibras, demonstrando que as fibras melhoram a ductilidade do concreto e provém uma resistência residual ao mesmo, sendo observados, após sua fratura, picos de recuperação graças à melhor aderência das fibras ao concreto. Além disso, para ambas as fibras, uma maior quantidade de fibras auxiliou a combater as rupturas bruscas observadas após concretos sem fibras esgotarem sua capacidade resistente. ABSTRACT: The demand for materials with higher performance than those usually used in civil construction stimulate researches aimed at the development of new technologies. In this context, ultra high performance fibers reinforced concrete (UHPFRC) stands out due to the high compressive and tensile strengths and higher ductility compared to conventional concrete. The present work had as main objective to evaluate experimentally the compressive strength and post - rupture behavior of UHPFRC with different types and dosages of fibers, using materials available in Brazil, aiming the use of these material in the current constructive processes. UHPFRC mixtures with steel fibers and polyethylene fibers using 0.5% and 1% fiber volumes were defined from an ultra high performance concrete mixture. The results obtained were compared to a reference concrete without fibers, demonstrating that the fibers improve the ductility of the concrete and provide a residual resistance after the exemplar fracture, recovery peaks due to the better adhesion of the fibers to the concrete. In addition, for both fibers, a greater amount of fibers helped to avoid sudden ruptures observed after concrete without fibers reached their resistant capacity.


Author(s):  
Mohamadreza Shafieifar ◽  
Mahsa Farzad ◽  
Atorod Azizinamini

Accelerated bridge construction (ABC) is a paradigm change in delivery of bridges. ABC minimizes the traffic interruption, enhances safety to public and workers by significantly reducing on-site construction activities, and results in longer-lasting bridges. The use of precast elements is gaining attention owing to inherent benefits of accelerated construction. Designing an economical connection is one of the main concerns for these structures. New improved materials such as ultra-high-performance concrete (UHPC) with superior characteristics can provide solutions for joining precast concrete elements. In this paper two types of column to cap beam connection using UHPC are proposed for seismic and non-seismic regions. Among the merits of the proposed details, large tolerances in construction and simplicity of the connection can be highlighted which facilitates and accelerates the on-site construction time. The experimental program was carried out to evaluate the performance and structural behavior of the proposed connections. Four specimens were subjected to constant axial compressive loads and cyclic lateral loading. Results of the experiment showed that the displacement ductility of the specimens, incorporating suggested details, demonstrated adequate levels of displacement ductility. More importantly, the proposed connections prevented the damage into capacity protected element—in this case the cap beam. Analytical and nonlinear finite element analysis on the specimens was carried out to better comprehend the behavior of the proposed connections.


Sign in / Sign up

Export Citation Format

Share Document