Development and Comparative Analysis of Advanced Deep Learning Techniques for Crash Prediction in Advanced Driver Support Systems

Author(s):  
Osama A Osman ◽  
Mustafa Hajij

Motor vehicle crashes claimed 38,800 lives and caused 4.4 million injuries in 2019 alone. Studies have shown that 94% of these crashes are because of driver errors. Such a huge contribution of driver errors to crashes indicates that efforts at improving safety should be directed toward both vehicles and drivers through advanced driver assistance systems (ADAS) and vehicular technologies. This study investigates the potential that real-time driver behavior data collected through vehicular technologies offer to predict crashes, as the first line of defense to avoid them. Three deep learning models were developed including multilayer perceptron neural networks (MLP-NN), long-short-term memory networks (LSTMN), and convolutional neural networks (CNN) using vehicle kinematics time series data extracted from the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP2 NDS) dataset. The study builds on the hypothesis that crashes are preceded by turbulences that take place over time (turbulence horizon). If these turbulences are detected promptly they can help predict and avoid crashes. Several values were tested for the turbulence horizon and the prediction horizon (how long before the crash impact it can be predicted) to identify the optimal values. The results showed that the CNN model can predict all crashes with a 100% accuracy and zero false alarms 3 s before the crash impact time when a 6-s turbulence horizon is used. This outstanding performance demonstrates the developed model is a promising tool for implementation in ADAS.

2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Senthil Kumar Paramasivan

In the modern era, deep learning is a powerful technique in the field of wind energy forecasting. The deep neural network effectively handles the seasonal variation and uncertainty characteristics of wind speed by proper structural design, objective function optimization, and feature learning. The present paper focuses on the critical analysis of wind energy forecasting using deep learning based Recurrent neural networks (RNN) models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent neural network processes the input time series data sequentially and captures well the temporal dependencies exist in the successive input data. This review investigates the RNN models of wind energy forecasting, the data sources utilized, and the performance achieved in terms of the error measures. The overall review shows that the deep learning based RNN improves the performance of wind energy forecasting compared to the conventional techniques.


2021 ◽  
Author(s):  
James George Clifford Ball ◽  
Katerina Petrova ◽  
David Coomes ◽  
Seth Flaxman

1. Tropical forests are subject to diverse deforestation pressures but their conservation is essential to achieve global climate goals. Predicting the location of deforestation is challenging due to the complexity of the natural and human systems involved but accurate and timely forecasts could enable effective planning and on-the-ground enforcement practices to curb deforestation rates. New computer vision technologies based on deep learning can be applied to the increasing volume of Earth observation data to generate novel insights and make predictions with unprecedented accuracy. 2. Here, we demonstrate the ability of deep convolutional neural networks to learn spatiotemporal patterns of deforestation from a limited set of freely available global data layers, including multispectral satellite imagery, the Hansen maps of historic deforestation (2001-2020) and the ALOS JAXA digital surface model, to forecast future deforestation (2021). We designed four original deep learning model architectures, based on 2D Convolutional Neural Networks (2DCNN), 3D Convolutional Neural Networks (3DCNN), and Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) to produce spatial maps that indicate the risk to each forested pixel (~30 m) in the landscape of becoming deforested within the next year.. They were trained and tested on data from two ~80,000 km2 tropical forest regions in the Southern Peruvian Amazon. 3. We found that the networks could predict the likely location of future deforestation to a high degree of accuracy. Our best performing model - a 3DCNN - had the highest pixel-wise accuracy (80-90%) when validated on 2020 deforestation based 2014-2019 training. Visual examination of the forecasts indicated that the 3DCNN network could automatically discern the drivers of forest loss from the input data. For example, pixels around new access routes (e.g. roads) were assigned high risk whereas this was not the case for recent, concentrated natural loss events (e.g. remote landslides). 4. CNNs can harness limited time-series data to predict near-future deforestation patterns, an important step in using the growing volume of satellite remote sensing data to curb global deforestation. The modelling framework can be readily applied to any tropical forest location and used by governments and conservation organisations to prevent deforestation and plan protected areas.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


Author(s):  
Osama A. Osman ◽  
Hesham Rakha

Distracted driving (i.e., engaging in secondary tasks) is an epidemic that threatens the lives of thousands every year. Data collected from vehicular sensor technologies and through connectivity provide comprehensive information that, if used to detect driver engagement in secondary tasks, could save thousands of lives and millions of dollars. This study investigates the possibility of achieving this goal using promising deep learning tools. Specifically, two deep neural network models (a multilayer perceptron neural network model and a long short-term memory networks [LSTMN] model) were developed to identify three secondary tasks: cellphone calling, cellphone texting, and conversation with adjacent passengers. The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) time series data, collected using vehicle sensor technology, were used to train and test the model. The results show excellent performance for the developed models, with a slight improvement for the LSTMN model, with overall classification accuracies ranging between 95 and 96%. Specifically, the models are able to identify the different types of secondary tasks with high accuracies of 100% for calling, 96%–97% for texting, 90%–91% for conversation, and 95%–96% for the normal driving. Based on this performance, the developed models improve on the results of a previous model developed by the author to classify the same three secondary tasks, which had an accuracy of 82%. The model is promising for use in in-vehicle driving assistance technology to report engagement in unlawful tasks or alert drivers to take over control in level 1 and 2 automated vehicles.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050001
Author(s):  
Yadigar N. Imamverdiyev ◽  
Fargana J. Abdullayeva

In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nahla F. Omran ◽  
Sara F. Abd-el Ghany ◽  
Hager Saleh ◽  
Abdelmgeid A. Ali ◽  
Abdu Gumaei ◽  
...  

The novel coronavirus disease (COVID-19) is regarded as one of the most imminent disease outbreaks which threaten public health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are experiencing depression, anxiety, and other strain reactions. The response to prevent and control the new coronavirus pneumonia has reached a crucial point. Therefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the virus outbreak in the course of this troublesome time to have control over its mortality. Recently, deep learning models are playing essential roles in handling time-series data in different applications. This paper presents a comparative study of two deep learning methods to forecast the confirmed cases and death cases of COVID-19. Long short-term memory (LSTM) and gated recurrent unit (GRU) have been applied on time-series data in three countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020 to 6/12/2020. The results show that LSTM has achieved the best performance in confirmed cases in the three countries, and GRU has achieved the best performance in death cases in Egypt and Kuwait.


Author(s):  
Chen Li ◽  
Junjun Zheng

Malicious software, called malware, can perform harmful actions on computer systems, which may cause economic damage and information leakage. Therefore, malware classification is meaningful and required to prevent malware attacks. Application programming interface (API) call sequences are easily observed and are good choices as features for malware classification. However, one of the main issues is how to generate a suitable feature for the algorithms of classification to achieve a high classification accuracy. Different malware sample brings API call sequence with different lengths, and these lengths may reach millions, which may cause computation cost and time complexities. Recurrent neural networks (RNNs) is one of the most versatile approaches to process time series data, which can be used to API call-based Malware calssification. In this paper, we propose a malware classification model with RNN, especially the long short-term memory (LSTM) and the gated recurrent unit (GRU), to classify variants of malware by using long-sequences of API calls. In numerical experiments, a benchmark dataset is used to illustrate the proposed approach and validate its accuracy. The numerical results show that the proposed RNN model works well on the malware classification.


2021 ◽  
Vol 3 (2) ◽  
pp. 1
Author(s):  
Akhter Mohiuddin Rather

Fractional This paper proposes a deep learning approach for prediction of nonstationary data. A new regression scheme has been used in the proposed model. Any non-stationary data can be used to test the efficiency of the proposed model, however in this work stock data has been used due to the fact that stock data has a property of being nonlinear or non-stationary in nature. Beside using proposed model, predictions were also obtained using some statistical models and artificial neural networks. Traditional statistical models did not yield any expected results; artificial neural networks resulted into high time complexity. Therefore, deep learning approach seemed to be the best method as of today in dealing with such problems wherein time complexity and excellent predictions are of concern.


Author(s):  
Arief Fadhlurrahman Rasyid ◽  
Dewi Agushinta R. ◽  
Dharma Tintri Ediraras

The stock price changes at any time within seconds. The stock price is a time series data. Thus, it is necessary to have the best analysis model in predicting the stock price to make decisions to avoid losses in investing. In this research, the method used two models Deep Learning namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting Indonesia Composite Stock Price Index (IHSG). The dataset used is historical data from the Jakarta Composite Index (^JKSE) stock price in 2013-2020 obtained through Yahoo Finance. The results suggest that Deep learning methods with LSTM and GRU models can predict Indonesia Composite Stock Price Index (IHSG). Based on the test results obtained RMSE value of 71.28959454502723 with an accuracy rate of 92.39% for LSTM models and obtained RMSE value of 70.61870739073838 with an accuracy rate of 96.77% on GRU models.


2019 ◽  
Vol 19 (5) ◽  
pp. 1340-1350
Author(s):  
Mulugeta A Haile ◽  
Edward Zhu ◽  
Christopher Hsu ◽  
Natasha Bradley

Acoustic emission signals are information rich and can be used to estimate the size and location of damage in structures. However, many existing algorithms may be deceived by indirectly propagated acoustic emission waves which are modulated by reflection boundaries within the structures. We propose two deep learning models to identify such waves such that existing algorithms for damage detection and localization may be used. The first approach uses long short-term memory recurrent neural networks to learn distinct patterns directly from the time-series data. In the second approach, we transform the time-series data into spectrograms and utilize convolutional neural networks to perform binary classification by leveraging spectro-temporal features. We achieved 80% classification accuracy using long short-term memory and near-perfect accuracy using convolutional neural networks on a dataset of acoustic emission signals generated by the Hsu-Nielsen sources. Both long short-term memory and convolutional neural network models were able to learn general and context-specific features of the direct and reflected acoustic emission waves. Once accurately identified, the indirectly propagating waves are filtered out while the directly propagating waves are used for source location using existing methods.


Sign in / Sign up

Export Citation Format

Share Document