Potential Coverage of Alternative Fuel Industries under EPACT Section 501

Author(s):  
P. S. Hu ◽  
M. Q. Wang ◽  
A. Vyas ◽  
M. Mintz ◽  
S. C. Davis

The Energy Policy Act (EPACT) has the goal of replacing 10 percent of transportation petroleum fuel with alternative fuels and replacement fuels by the year 2000 and 30 percent by 2010. Sections 501 and 507 of EPACT mandate use of alternative fuel vehicles (AFVs) in fleet applications. In particular, Section 501 requires that certain percentages of new light-duty vehicles (LDVs) acquired by alternative fuel providers be AFVs. The first step in estimating the effects of these mandates entails identifying affected fleets that are covered by the act. An assessment of potential fleet coverage of Section 501 is presented. This assessment concludes that a limited number of companies in the methanol, ethanol, propane, and hydrogen industries are likely to be covered by this mandate. On the other hand, many of the large crude-oil producers, petroleum refiners, natural-gas producers and transporters, and natural gas and electric utilities are likely to be subject to this mandate.

Author(s):  
Anant D. Vyas ◽  
Michael Q. Wang

Section 501 of the 1992 Energy Policy and Conservation Act (EPACT) mandates that alternative fuel providers who sell such fuels for transportation acquire alternative fuel vehicles (AFVs). The potential impacts of this mandate on the two largest groups of alternative fuel providers—electricity and natural gas (NG) providers—are presented. Nationwide, 166 electric-only utilities, 127 NG-only utilities, and 55 dual-utilities are covered by EPACT. Together, these companies own or operate nearly 122,000 light-duty vehicles in EPACT-defined metropolitan areas. Some 63 NG producers and transporters, which have 9,700 light-duty vehicles, are also covered. Covered fuel providers are expected to purchase 2,710 AFVs in 1996 and 13,650 AFVs by 2001. NG companies already have 19.4 percent of their existing light-duty vehicle stocks as AFVs, dual companies have 10.0 percent, NG producers and transporters have 7.0 percent, and electric companies have 1.6 percent. If the existing AFVs count toward meeting the Section 501 requirements, NG providers (utilities, dual utilities, producers, and transporters) will need to make little effort, but electric companies will have to make substantial commitments to meet the requirement.


Author(s):  
P. S. Hu ◽  
M. Q. Wang

Section 507(o) of the Energy Policy Act (EPACT) requires state governments to purchase an increasing percentage of alternative fuel vehicles for their light-duty vehicle (LDV) fleets. This requirement began in model year 1996. To determine the effect of this mandate, the total number of state vehicles that may be covered under this mandate and the number of alternative-fuel LDVs that may be acquired is estimated. In addition, operating characteristics, fuel use, turnover rate, and refueling practices of state fleet vehicles are presented.


Author(s):  
Thomas Kornfield ◽  
Michael F. Lawrence

Regulatory incentives for increased usage of alternative fuels in motor vehicles could have an impact on home heating costs, potentially increasing the price of natural gas and liquefied petroleum gas (LPG, or propane) while decreasing the price of home heating oil. The Alternative Fuels Trade Model (AFTM) is used to estimate these end-use cost impacts by comparing price results from two scenarios: a base case and an unconstrained case. The AFTM is a macroeconomic simulation model for determining prices and quantities that balance the interrelated world oil and gas markets given assumptions about supply, demand, and costs. Under the base case, alternative fuel usage is set at 5.5 percent of total light-duty motor vehicle fuel usage, while under the unconstrained case, alternative fuel-usage levels increase to 32 percent. All prices and expenditures are estimated for the year 2010 and are expressed in 1992 dollars. Increased usage of compressed natural gas (CNG) and LPG by alternative fuel vehicles as a result of either regulatory incentives or market forces will tend to increase annual natural gas and LPG home heating costs, while reducing distillate fuel-oil home heating costs. Per household, natural gas and LPG annual home heating costs are predicted to increase by $4.14 and $20.65, respectively, while annual distillate fuel-oil home heating costs are predicted to decrease by $3.17. The increase for LPG amounts to a 3.7 percent increase over the base case expenditures. These cost impacts are estimated at the national and regional levels and by income classification.


2021 ◽  
pp. 1-39
Author(s):  
Akash Chandrabhan Chandekar ◽  
Sushmita Deka ◽  
Biplab K. Debnath ◽  
Ramesh Babu Pallekonda

Abstract The persistent efforts among the researchers are being done to reduce emissions by the exploration of different alternative fuels. The application of alternative fuel is also found to influence engine vibration. The present study explores the potential connection between the change of the engine operating parameters and the engine vibration pattern. The objective is to analyse the effect of alternative fuel on engine vibration and performance. The experiments are performed on two different engines of single cylinder and twin-cylinder variants at the load range of 0 to 34Nm, with steps of 6.8Nm and at the constant speed of 1500rpm. The single cylinder engine, fuelled with only diesel mode, is tested at two compression ratios of 16.5 and 17.5. While, the twin-cylinder engine with a constant compression ratio of 16.5, is tested at both diesel unifuel and diesel-compressed natural gas dual-fuel modes. Further, in dual-fuel mode, tests are conducted with compressed natural gas substitutions of 40%, 60% and 80% for given loads and speed. The engine vibration signatures are measured in terms of root mean square acceleration, representing the amplitude of vibration. The combustion parameters considered are cylinder pressure, rate of pressure rise, heat release rate and ignition delay. At higher loads, the vibration amplitude increases along with the cylinder pressure. The maximum peak cylinder pressure of 95bar is found in the case of the single cylinder engine at the highest load condition that also produced a peak vibration of 3219m/s2.


Author(s):  
Parisa Bastani ◽  
John B. Heywood ◽  
Chris Hope

On-road transportation contributes 22% of the total CO2 emissions and more than 44% of oil consumption in the U.S. Technological advancements and use of alternative fuels are often suggested as ways to reduce these emissions. However, many parameters and relationships that determine the future characteristics of the light-duty vehicle fleet and how they change over time are inherently uncertain. Policy makers need to make decisions today given these uncertainties, to shape the future of light-duty vehicles. Decision makers thus need to know the impact of uncertainties on the outcome of their decisions and the associated risks. This paper explores a carefully constructed detailed pathway that results in a significant reduction in fuel use and GHG emissions in 2050. Inputs are assigned realistic uncertainty bounds, and the impact of uncertainty on this pathway is analyzed. A novel probabilistic fleet model is used here to quantify the uncertainties within advanced vehicle technology development, and life-cycle emissions of alternative fuels and renewable sources. Based on the results from this study, the expected fuel use is about 500 and 350 billion litres gasoline equivalent, with a standard deviation of about 40 and 80 billion litres in years 2030 and 2050 respectively. The expected CO2 emissions are about 1,360 and 840 Mt CO2 equivalent with a spread of about 130 and 260 Mt CO2 equivalent in 2030 and 2050 respectively. Major contributing factors in determining the future fuel consumption and emissions are also identified and include vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel consumption of naturally-aspirated engines, and percentage of gasoline displaced by cellulosic ethanol. This type of analysis allows policy makers to better understand the impact of their decisions and proposed policies given the technological and market uncertainties that we face today.


Author(s):  
Mehrnoosh Dashti ◽  
Ali Asghar Hamidi ◽  
Ali Asghar Mozafari

With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1–5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost effective tool for design and analysis of the engine operations. In the present work the use of an exiting spark ignition engine to run on both gasoline and CNG is evaluated by thermodynamic simulation of the engine cycle. The stepwise calculations for pressure and temperature of the cylinder at compression process, ignition delay time, combustion and expansion processes have been considered. The first law of thermodynamics is applied for all steps and Newton-Raphson method is used for the numerical solution. Temperature dependent specific heat capacity and as a result specific enthalpy, entropy, internal energy and specific Gibbs functions are calculated in each step. Two zones model for the combustion process simulation has been used and the mass burning rate is predicted by considering the propagation of the flame front spherically. The performance characteristics including power, IMEP, ISFC, thermal efficiency and emissions concentration of SI engine on both gasoline and CNG fuel are determined by the model. In order to validate the model, the results are compared with the corresponding experimental data. It is found that the simulated results show reasonable agreement with the experimental data.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Parisa Bastani ◽  
John B. Heywood ◽  
Chris Hope

On-road transportation contributes 22% of the total CO2 emissions and more than 44% of oil consumption in the U.S. technological advancements and use of alternative fuels are often suggested as ways to reduce these emissions. However, many parameters and relationships that determine the future characteristics of the light-duty vehicle (LDV) fleet and how they change over time are inherently uncertain. Policy makers need to make decisions today given these uncertainties, to shape the future of light-duty vehicles. Decision makers thus need to know the impact of uncertainties on the outcome of their decisions and the associated risks. This paper explores a carefully constructed detailed pathway that results in a significant reduction in fuel use and greenhouse gases (GHG) emissions in 2050. Inputs are assigned realistic uncertainty bounds, and the impact of uncertainty on this pathway is analyzed. A novel probabilistic fleet model is used here to quantify the uncertainties within advanced vehicle technology development, and life-cycle emissions of alternative fuels and renewable sources. Based on the results from this study, the expected fuel use is about 500 and 350 × 109 l gasoline equivalent, with a standard deviation of about 40 and 80 × 109 l in years 2030 and 2050, respectively. The expected CO2 emissions are about 1360 and 840 Mt CO2 equivalent with a spread of about 130 and 260 Mt CO2 equivalent in 2030 and 2050, respectively. Major contributing factors in determining the future fuel consumption and emissions are also identified and include vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel consumption of naturally aspirated engines, and percentage of gasoline displaced by cellulosic ethanol. This type of analysis allows policy makers to better understand the impact of their decisions and proposed policies given the technological and market uncertainties that we face today.


Author(s):  
Par Neiburger

Liberator Engine Company, LLC designs, develops and produces alternative fuel engines for vehicles around the globe. The Company’s 6.0 Liter Liberator™ gaseous fuels engine will have the ability to operate on Compressed Natural Gas, Liquefied Natural Gas or Liquid Propane Gas: clean, domestic, economical fuels. The Liberator engine will target OEM on road vehicles, as well as off road applications. The Liberator engine is also an excellent choice for the repower of existing diesel vehicles. The 6.0L Liberator™ engine will serve as a replacement engine for vehicle currently operating on a Cummins 5.9L diesel engine or Mercedes diesel 6.0L engine. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document