Analysis of the Cross-Sectional Area of the Adductor Longus Tendon

2007 ◽  
Vol 35 (6) ◽  
pp. 996-999 ◽  
Author(s):  
Eric J. Strauss ◽  
Kirk Campbell ◽  
Joseph A. Bosco

Background Strain injury to the adductor longus muscle is a common cause of groin pain in athletes and generally occurs in the proximal portion of the muscle, near its origin from the anterior aspect of the pubis. The composition and cross-sectional anatomy of this muscle's origin has not been previously described. Hypothesis We hypothesize that the adductor longus muscle origin is composed mainly of muscle fibers and that the tendon composes only a small part of the cross section at the origin of the muscle. Study Design Descriptive laboratory study. Methods We harvested 42 adductor longus muscles from 28 cadavers and measured the cross-sectional dimensions of the tendon with microcalipers. Next, we determined the relative contributions of the tendon and muscle fibers to the cross-sectional anatomy of the muscle using optical scanning. These 2 sets of measurements were obtained at 3 locations: at the muscle origin and 1.0 and 2.0 cm distal to the origin. Results The average length and width of the tendon was 11.6 and 3.7 mm, respectively, at the origin. The average cross-sectional areas of the tendon were 49.3, 27.9, and 25.7 mm2 at points 0.0, 1.0, and 2.0 cm from its origin, respectively. The origin of the adductor longus muscle was composed of 37.9% tendon and 62.1% muscle tissue. At 1.0 cm from the origin, the percentage of tendon decreased to 34%. At 2.0 cm from the origin, the tendon composed 26.7% of the cross section. Conclusion The cross-sectional area of the tendon of the adductor longus muscle is relatively small. The muscle origin is composed predominantly of direct attachment of muscle fibers. Clinical Relevance Knowledge of the cross-sectional anatomy of the adductor longus muscle at its origin may help clinicians better understand the complex nature of injuries in this area.

Mechanik ◽  
2019 ◽  
Vol 92 (7) ◽  
pp. 412-414
Author(s):  
Jan Burek ◽  
Rafał Flejszar ◽  
Barbara Jamuła

The analytical and numerical model of the cross-section of the machined layer in the process of milling of concave rounding is presented. Simulation tests were carried out to determine the cross-sectional area of the cutting layer. A strategy has been developed that allows to increase the stability of the cross-section area of the cutting layer when the mill enters the inner corner area.


1986 ◽  
Vol 55 (1) ◽  
pp. 147-162 ◽  
Author(s):  
J. M. Spielmann ◽  
E. K. Stauffer

The glycogen-depletion technique (17, 32) has been used to examine the functional and morphological relationships between single isolated motor units (MUs) and single isolated Golgi tendon organs (GTOs) that were excited by the MUs in the soleus muscle of the cat. All MUs whose twitch contraction generated a brisk discharge from the GTOs during the rising and plateau phase of force development had a muscle fiber attached specifically to the proximal end of the GTOs. A significant (P less than 0.05) linear relationship was found between GTO discharge rate and the cross-sectional area of the muscle fibers that connected to a receptor. This was true when the correlation was calculated between firing rate and 1) the cross-sectional area of the entire collection of muscle fibers that connected in series to the GTOs; and 2) for the cross-sectional areas of the individually depleted muscle fibers that inserted on the GTO sample. These findings support the notion that the most physiologically relevant input for GTOs arises from the MUs that are attached directly in-series with the receptor.


2014 ◽  
Vol 919-921 ◽  
pp. 1760-1770 ◽  
Author(s):  
Fu Jian Tang ◽  
Gen Da Chen ◽  
Wei Jian Yi

This study experimentally investigated corrosion-induced deterioration in reinforced concrete (RC) structures: concrete cover cracking, steel-concrete bond loss, and mechanical degradation of corroded steel bars. Pullout and RC beam specimens were prepared, subjected to accelerated corrosion in a wet sand bath, and tested under loading. A 3D laser scan was employed to measure the surface profile of corroded steel bars and determine the corrosion effect on the distribution of residual cross section area. The crack width on the concrete surface was sampled randomly and analyzed statistically. Corrosion reduced the bond strength between steel bars and concrete, particularly in the form of corrosion-induced number and width of cracks. Both the yield and ultimate strengths depended upon the critical cross sectional area of steel bars, whereas the elongation changed with the cross section distribution over the length of the steel bars. Corrosion also changed the distribution of the cross sectional area of steel bars. The crack width on the concrete surface can be well represented by a normal distribution regardless of corrosion levels.


2008 ◽  
Vol 295 (2) ◽  
pp. C458-C467 ◽  
Author(s):  
Fuminori Kawano ◽  
Yoshiaki Takeno ◽  
Naoya Nakai ◽  
Yoko Higo ◽  
Masahiro Terada ◽  
...  

Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were ∼68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.


1979 ◽  
Vol 236 (5) ◽  
pp. E545
Author(s):  
D A Mary ◽  
P J North ◽  
J N Hunt

A scanning esophageal probe for measuring luminal cross section is described. Current is injected into electrode assemblies so that a variable voltage output directly proportional to interelectrode impedance and inversely proportional to cross-sectional area of the medium around the electrodes may be measured. The device is capable of measuring the cross section of glass cylinders. It was used in one esophagus to measure the cross-sectional area of different sizes of swallowed bolus. The probe offers a safe and repeatable method of studying dynamic changes in luminal dimensions of the esophagus.


2008 ◽  
Vol 291 (5) ◽  
pp. 586-592 ◽  
Author(s):  
Mayvi Alvarado ◽  
Estela Cuevas ◽  
Miguel Lara-García ◽  
Miguel Camacho ◽  
Porfirio Carrillo ◽  
...  

1988 ◽  
Vol 110 (2) ◽  
pp. 104-109 ◽  
Author(s):  
N. G. Shrive ◽  
T. C. Lam ◽  
E. Damson ◽  
C. B. Frank

There appears to be no generally accepted method of measuring in-situ the cross-sectional area of connective tissues, particularly small ones, before mechanical testing. An instrument has therefore been devised to measure the cross-sectional area of one such tissue, the rabbit medial collateral ligament, directly and nondestructively. However, the methodology is general and could be applied to other tissues with appropriate changes in detail. The concept employed in the instrument is to measure the thickness of the tissue as a function of position along the width of the tissue. The plot obtained of thickness versus width position is integrated to provide the cross-sectional area. This area is accurate to within 5 percent, depending mainly on alignment of the instrument and pre-load of the ligament. Results on the mid-substance of the rabbit medial collateral ligaments are repeatable and reproducible. Values of maximum width and thickness are less variable than those obtained with a vernier caliper. The measured area is considerably less than that estimated assuming rectangular cross-section and slightly less than that estimated on the assumption of elliptical cross-section.


2017 ◽  
Vol 300 (7) ◽  
pp. 1327-1335
Author(s):  
Miguel Lara-García ◽  
Mayvi Alvarado ◽  
Estela Cuevas ◽  
Omar Lara-García ◽  
Dale R. Sengelaub ◽  
...  

2013 ◽  
Vol 296 (10) ◽  
pp. 1634-1639 ◽  
Author(s):  
Mayvi Alvarado ◽  
Miguel Lara-García ◽  
Estela Cuevas ◽  
Pere Berbel ◽  
Pablo Pacheco

2021 ◽  
Vol 11 (12) ◽  
pp. 5350
Author(s):  
Giovanna Vermiglio ◽  
Mariagrazia Piancino ◽  
Michele Runci Anastasi ◽  
Giacomo Picciolo ◽  
Antonio Centofanti ◽  
...  

Unilateral posterior crossbite is a type of malocclusion that involves morpho-functional characteristics of masticatory muscle, such as the masseter: electrophysiological data have shown that the affected side works less than the contralateral muscle, which shows a normal or increased activity, probably in order to compensate for the affected side. The aim of present work was to measure the diameter and the cross-sectional area of ipsilateral and contralateral muscle fibers to verify if hypertrophy and/or hypotrophy take place in this malocclusion. We used immunofluorescence pictures to measure, using ImageJ software, the diameter and the cross-sectional area of fibers from control and crossbite groups; after that, the data were processed to perform statistical analyses. Results show that the fiber diameters of contralateral muscle are larger than the diameters of ipsilateral and control fibers, and that this difference is statistically significant. No statistically significant difference was found between the fiber diameters of the ipsilateral and control muscles. All these data suggest that, during unilateral posterior crossbite, morphological changes take place in the contralateral masseter muscle, which undergoes hypertrophy, probably to compensate for the low activity of the affected muscle.


Sign in / Sign up

Export Citation Format

Share Document