Influence of fiber length and compatibilizer on mechanical properties of long glass fiber reinforced polyamide 6,6

2012 ◽  
Vol 31 (16) ◽  
pp. 1103-1112 ◽  
Author(s):  
Bin Yang ◽  
Jinhua Leng ◽  
Bobing He ◽  
Heng Liu ◽  
Yu Zhang ◽  
...  
2010 ◽  
Vol 24 (15n16) ◽  
pp. 2555-2560 ◽  
Author(s):  
KAZUTO TANAKA ◽  
TSUTAO KATAYAMA ◽  
TATSUYA TANAKA ◽  
AKIHIRO ANGURI

During an injection molding of composite materials, fiber attrition occurs and the average fiber length is reduced. In order to control the breakage of fibers and degradation of mechanical properties during processing, Flat glass Fiber (FF), that has oval cross-section shape, has been developed to use for glass fiber reinforced thermoplastic (GFRTP). Using FF as reinforcement of GFRTP has advantages as following: (1) Fluidity of FF is better than conventional Normal glass Fiber (NF) with 'circular' cross-section; (2) Fiber breakage during the injection molding process using FF is smaller than that using NF. In this study, the mechanical properties of FF and NF were compared for reinforcement of long fiber thermoplastics pellets (LFT pellets). We have also investigated the effect of screw design on fiber damage and the mechanical properties. The mechanical properties of specimens molded by FF reinforcement LFT (FF-LFT) pellets were superior to these of NF reinforcement LFT (NF-LFT) pellets. The former could give composites with higher fluidity and longer residual fiber length. Moreover, FF was able to strengthen injection-molded samples with higher fiber content than NF. Low shear type screw was effective to prevent the fiber attrition during plasticization process, hence leads to better mechanical properties of GFRTP


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2019 ◽  
Author(s):  
Junjia Cui ◽  
Shaoluo Wang ◽  
Shuhao Wang ◽  
Guangyao Li ◽  
Peilin Wang ◽  
...  

Long glass fiber reinforced thermoplastic composites have been increasingly used in automotive parts due to their excellent mechanical properties and recyclability. However, the effects of strain rates on the mechanical properties and failure mechanisms of long glass fiber reinforced polypropylene composites (LGFRPPs) have not been studied systematically. In this study, the effects of strain rates (from 0.001 s−1 to 400 s−1) on the mechanical properties and failure mechanism of LGFRPPs were investigated. The results showed that ultimate strength and fracture strain of the LGFRPPs increased obviously, whereas the stiffness remained essentially unchanged with the strain rates from low to high. The micro-failure modes mainly consisted of fibers pulled out, fiber breakage, interfacial debonding, matrix cracking, and ductile to brittle (ductile pulling of fibrils/micro-fibrils) fracture behavior of the matrix. As the strain rates increased, the interfacial bonding properties of LGFRPPs increased, resulting in a gradual increase of fiber breakage at the fracture surface of the specimen and the gradual decrease of pull-out. In this process, more failure energy was absorbed, thus, the ultimate strength and fracture strain of LGFRPPs were improved.


Sign in / Sign up

Export Citation Format

Share Document