Experimental and numerical studies on seismic behavior of hollow bridge columns retrofitted with carbon fiber reinforced polymer

2014 ◽  
Vol 33 (24) ◽  
pp. 2214-2227 ◽  
Author(s):  
Qiang Han ◽  
Jianian Wen ◽  
Xiuli Du ◽  
Junfeng Jia
2017 ◽  
Vol 21 (4) ◽  
pp. 613-623 ◽  
Author(s):  
Gamal Elnabelsy ◽  
Murat Saatcioglu

One of the applications of fiber-reinforced polymers in bridge construction is stay-in-place formwork. Fiber-reinforced polymer stay-in-place formwork, in the form of preformed tubes, provides easy form assembly, protection of steel reinforcement and concrete against corrosion and chemical attacks while also improving the strength and ductility of structural elements in earthquake resistant construction. Experimental research was conducted to investigate the seismic performance of fiber-reinforced polymer stay-in-place formwork for bridge columns. Tests of large-scale specimens were conducted under simulated seismic loading. The experimental program included circular and square columns confined with carbon fiber–reinforced polymer tubes. The results indicate that the use of carbon fiber–reinforced polymer tubes increases column inelastic deformability significantly. Bridge columns under low levels of axial compression exhibit inelastic drift capacities in excess of 4% before failing in flexural tension due to the rupturing of longitudinal reinforcement. These observations and experimental results were used to develop a displacement-based design procedure for concrete confinement for fiber-reinforced polymer–encased concrete columns. This article presents an overview of the experimental program and the design approach developed.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document