Embodied Genres, Typified Performances, and the Engineering Design Process

2021 ◽  
pp. 074108832110315
Author(s):  
Scott Weedon ◽  
T. Kenny Fountain

Using rhetorical genre theory, the authors theorize the engineering design process as a type of embodied genre enacted through typified performances of bodies engaged with discourses, texts, and objects in genre-rich spaces of design activity. The authors illustrate this through an analysis of ethnographic data from an engineering design course to show how a genred repertoire of embodied routines is demonstrated for students and later taken up as part of their design work. A greater appreciation of the interconnection between genre and design as well as the role of typification in producing embodied genres can potentially transform how writing studies conceive of and teach both design processes and genres in technical and professional communication settings.

2010 ◽  
Vol 97-101 ◽  
pp. 3341-3344
Author(s):  
Dong Bo Wang ◽  
Xiu Tian Yan ◽  
Ning Sheng Guo ◽  
Tao Li

In order to support the dynamic and creative Engineering Design Process (EDP) comprehensively, after a detailed literature review, a multi autonomic objects (AO) flexible workflow is applied into the supporting and management of EDP, its support for decision making, EDP evolution and design activity granularity is explained, finally and most importantly, a genetic algorithm-based AO knowledge learning method is proposed, the algorithm is demonstrated by a MATLAB simulation that it can satisfy the knowledge acquisition in EDP satisfactorily.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hannah Nolte ◽  
Christopher McComb

Abstract The engineering design process can produce stress that endures even after it has been completed. This may be particularly true for students who engage with the process as novices. However, it is not known how individual components of the design process induce stress in designers. This study explored the cognitive experience of introductory engineering design students during concept generation, concept selection and physical modelling to identify stress signatures for these three design activities. Data were collected for the design activities using pre- and post-task surveys. Each design activity produced distinct markers of cognitive experience and a unique stress signature that was stable across design activity themes. Rankings of perceived sources of stress also differed for each design activity. Students, however, did not perceive any physiological changes due to the stress of design for any of the design activities. Findings indicate that physical modelling was the most stressful for students, followed by concept generation and then concept selection. Additionally, recommendations for instructors of introductory engineering design courses were provided to help them apply the results of this study. Better understanding of the cognitive experience of students during design can support instructors as they learn to better teach design.


Author(s):  
Damien Motte ◽  
Per-Erik Andersson ◽  
Robert Bjärnemo

Most methods that guide the designer through the later phases of the design process are general in nature, and it is up to the designer to organize the design work using the tools and techniques available. This process also relies greatly on experience, which is quite a challenge for students, who are mostly novices in the area. In a comparative study, the evolution of the experience and skills acquired by the students in performing design tasks during the embodiment design and detail design phases has been analyzed. The re-sults indicate the main directions for improvement in teaching the later phases of the mechanical engineer-ing design process.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Rugh ◽  
Donald J. Beyette ◽  
Mary Margaret Capraro ◽  
Robert M. Capraro

Purpose The purpose of this study is to examine a week-long science, technology, engineering and mathematics (STEM) project-based learning (PBL) activity that integrates a new educational technology and the engineering design process to teach middle and high school students the concepts involved in rotational physics. The technology and teaching method described in this paper can be applied to a wide variety of STEM content areas. Design/methodology/approach As an educational technology, the dynamic and interactive mathematical expressions (DIME) map system automatically generates an interactive, connected concept map of mathematically based concepts extracted from a portable document format textbook chapter. Over five days, students used DIME maps to engage in meaningful self-guided learning within the engineering design process and STEM PBL. Findings Using DIME maps within a STEM PBL activity, students explored the physics behind spinning objects, proposed multiple creative designs and built a variety of spinners to meet specified criteria and constraints. Practical implications STEM teachers can use DIME maps and STEM PBL to support their students in making connections between what they learn in the classroom and real-world scenarios. Social implications For any classroom with computers, tablets or phones and an internet connection, DIME maps are an accessible educational technology that provides an alternative representation of knowledge for learners who are underserved by traditional methods of instruction. Originality/value For STEM teachers and education researchers, the activity described in this paper uses advances in technology (DIME maps and slow-motion video capture on cell phones) and pedagogy (STEM PBL and the engineering design process) to enable students to engage in meaningful learning.


Author(s):  
Victoria Zhao ◽  
Conrad S. Tucker

Information is transferred through a process consisting of an information source, a transmitter, a channel, a receiver and its destination. Unfortunately, during different stages of the engineering design process, there is a risk of a design idea or solution being incorrectly interpreted due to the nonlinearity of engineering design. I.e., there are many ways to communicate a single design idea or solution. This paper provides a comprehensive review and categorization of the possible sources of information loss at different stages of the engineering design process. Next, the authors present an approach that seeks to minimize information loss during certain stages of the engineering design process. The paper i) explores design process and dissemination methods in engineering design; ii) reviews prior work pertaining to these stages of the engineering design process and iii) proposes an information entropy metric that designers can utilize in order to quantify information loss at different stages of the engineering design process. Knowledge gained from this work will aid designers in selecting a suitable dissemination solution needed to effectively achieve a design solution.


Sign in / Sign up

Export Citation Format

Share Document