Bisphenol A decreases expression of insulin-like factor 3 and induces histopathological changes in testes of rat

2021 ◽  
pp. 074823372110140
Author(s):  
Leman Sencar ◽  
Gulfidan coskun ◽  
Dilek Şaker ◽  
Tuğçe Sapmaz ◽  
Abdullah Tuli ◽  
...  

Bisphenol A (BPA) is a chemical agent known to have detrimental reproductive and developmental effects. The tissue-specific impacts of BPA exposures and target tissues sensitiveness to BPA are still unclear. The aim of this study was to determine the short- and long-term dose-dependent toxic effects of BPA on rat testes. Forty-eight Wistar albino male rats were divided into four groups each containing 12 rats. To induce toxicity, BPA was administered orally at three different dosages (50, 100, and 200 mg/kg) for 14 and 28 days, respectively. Testis tissues were examined using light and electron microscopy, immunohistochemistry, and biochemical methods. Serum testosterone (T) and luteinizing hormone (LH) levels were measured. Additionally, insulin-like factor 3 (INSL3) as a marker of Leydig cell function was evaluated immunohistochemically. Groups administered high doses of BPA showed severe degenerations such as testicular atrophy, spermatogenic arrest, and interstitial edema in testis. Also, a significant decrease in INSL3 immunoreactivity and serum LH and T levels was found. The results indicated that both increased exposure time and dosage of BPA caused more serious detrimental effects on testes in the rat. Decreased INSL3 and T levels was evidence of Leydig cell function impairment due to BPA.

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0191934 ◽  
Author(s):  
Soria Eladak ◽  
Delphine Moison ◽  
Marie-Justine Guerquin ◽  
Gabriele Matilionyte ◽  
Karen Kilcoyne ◽  
...  

1994 ◽  
Vol 141 (3) ◽  
pp. 449-457 ◽  
Author(s):  
T Matikainen ◽  
J Toppari ◽  
K K Vihko ◽  
I Huhtaniemi

Abstract The mode of FSH actions within the testis was studied in immature hypophysectomized male rats by treatment with recombinant human FSH (recFSH, Org 32489). To elucidate the involvement of Leydig cells and androgens in the maintenance of spermatogenesis in FSH-treated hypophysectomized rats further, the recFSH treatment was given both alone and after destruction of Leydig cells with ethane-1,2-dimethane sulphonate (EDS). Three days after hypophysectomy (at 31 days of age) the rats were given one i.p. injection of vehicle or EDS and, 4 days later, they were implanted with osmotic minipumps releasing either 0·9% (w/v) NaCl or 1 IU recFSH/day. Recombinant FSH alone increased testicular weights 2·5-fold in 7 days (P<0·01). The effect of FSH was similar in EDS-pretreated rats (P<0·01). Testicular testosterone increased from 6·5 ± 1·6 to 16·9 ± 5·3 (s.e.m.) pmol/g tissue (P<0·05) and serum testosterone from 0·12 ± 0·02 to 0·22 ± 0·03 nmol/l (P<0·05) when the rats were treated with recFSH. EDS alone did not affect testicular testosterone but, when combined with recFSH, it totally abolished the stimulatory effect of FSH on testosterone. Testicular binding of 125I-labelled iodo human chorionic gonadotrophin (hCG) and 125I-labelled iodo recFSH was increased 2·5- and 2·1-fold respectively with recFSH treatment (P<0·01). EDS, either alone or with FSH, abolished specific testicular hCG binding (P<0·01), but had no effect on that of recFSH. However, FSH increased its own receptors only in animals not treated with EDS. Histological analysis of the testes revealed that the diameters of the seminiferous tubules increased from 115 ± 6·1 to 160 ± 7·2 μm (P<0·05) with recFSH, and a comparable increase was observed when EDS treatment preceded that of recFSH (143 ± 1·5 μm, P<0·05 vs. controls). Quantification of the spermatogenic cells indicated that recFSH supported the progression of spermatogenesis, as shown by increased number of meiotic and haploid spermatogenic cells (P<0·05). In all EDS-treated animals, spermatogenesis was severely disturbed and only a few spermatids were seen. In conclusion: (1) these results further support the suggestion that FSH has indirect stimulatory effects on Leydig cell function, (2) the completion of meiosis and spermiogenesis are supported by FSH, the effect of which is enhanced by the presence of Leydig cells, suggesting its dependence on androgens, and (3) we show for the first time that FSH is able to stimulate its own receptors only in the presence of Leydig cell-derived factors, probably androgens. Journal of Endocrinology (1994) 141, 449–457


2004 ◽  
Vol 89 (7) ◽  
pp. 3161-3167 ◽  
Author(s):  
A.-M. Andersson ◽  
N. Jørgensen ◽  
L. Frydelund-Larsen ◽  
E. Rajpert-De Meyts ◽  
N. E. Skakkebæk

Abstract To investigate whether an impaired Leydig cell function is present in severely oligospermic men, serum testosterone (T), LH, estradiol (E2), and SHBG levels in 357 idiopathic infertile men were compared with levels in 318 proven fertile men. In addition, the T/LH ratio, E2/T ratio, and calculated free T index (cFT) were compared between the two groups. A shift toward lower serum T levels, cFT, and T/LH ratio and higher serum LH, E2, and E2/T levels was observed in the group of infertile men. On average, the infertile men had 18, 26, and 34% lower serum T, cFT, and T/LH levels, respectively, and 19, 18, and 33% higher serum LH, E2, and E2/T levels, respectively, than the fertile men. Twelve percent of the infertile men had a serum T level that fell below the 2.5 percentile of the fertile levels, and 15% of the infertile men had a LH level that was above the 97.5 percentile of the fertile levels. Thus, the group of infertile men showed significant signs of impaired Leydig cell function in parallel to their impaired spermatogenesis. The association of decreased spermatogenesis and impaired Leydig cell function might reflect a disturbed paracrine communication between the seminiferous epithelium and the Leydig cells, triggered by distorted function of the seminiferous epithelium. On the other hand, the parallel impairment of spermatogenesis and Leydig cells may reflect a congenital dysfunction of both compartments caused by a testicular dysgenesis during fetal/infant development.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51579 ◽  
Author(s):  
Thierry N’Tumba-Byn ◽  
Delphine Moison ◽  
Marlène Lacroix ◽  
Charlotte Lecureuil ◽  
Laëtitia Lesage ◽  
...  

1974 ◽  
Vol 77 (1_Suppl) ◽  
pp. S61
Author(s):  
R. Mies ◽  
D. Heesen ◽  
W. Winkelmann

1985 ◽  
Vol 132 (2) ◽  
pp. 729-734 ◽  
Author(s):  
M. Benahmed ◽  
C. Grenot ◽  
E. Tabone ◽  
P. Sanchez ◽  
A.M. Morera

1999 ◽  
Vol 17 (1) ◽  
pp. 173-173 ◽  
Author(s):  
Peter Meidahl Petersen ◽  
Aleksander Giwercman ◽  
Steen W. Hansen ◽  
Jørgen G. Berthelsen ◽  
Gedske Daugaard ◽  
...  

PURPOSE: To elucidate the biologic association between germ cell neoplasia and testicular dysfunction, through investigation of Leydig cell function and semen quality in men with carcinoma-in-situ (CIS) of the testis. PATIENTS AND METHODS: We examined two groups of men, unilaterally orchidectomized for testicular cancer. Biopsy of the contralateral testis had showed CIS in a group of 24 patients and no evidence of CIS in the other group of 30 patients. Semen quality and serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were compared in these two groups of men after orchidectomy but before further treatment for testicular cancer. RESULTS: Significantly higher LH levels (median, 8.1 IU/L v 4.8 IU/L; P < .001) and generally lower testosterone levels (median, 12.5 nmol/L v 15.5 nmol/L; P = .13) were found in the CIS group. The proportion of patients with Leydig cell dysfunction was higher in the group of patients with CIS (11 of 24) than in the group of patients without (two of 30) (P = .01). Sperm concentration and total sperm count were significantly lower (P < .001) in patients with CIS (median, 0.03 × 106/mL and 0.10 × 106, respectively) than in patients without (median, 9.1 × 106/mL and 32 × 106, respectively), whereas the levels of FSH were significantly higher (P < .001) in the former group of men (median, 19.6 IU/L v 9.0 IU/L). CONCLUSION: Not only spermatogenesis but also Leydig cell function is impaired in testes with CIS. This impairment could be due to common factors in the pathogenesis of germ cell neoplasm and testicular dysfunction. Alternatively, CIS cells may have a negative impact on Leydig cell function.


Sign in / Sign up

Export Citation Format

Share Document