Composite sponges from sheep decellularized small intestinal submucosa for treatment of diabetic wounds

2020 ◽  
pp. 088532822096389
Author(s):  
Gamze Kara Magden ◽  
Cigdem Vural ◽  
Busra Yaprak Bayrak ◽  
Candan Yilmaz Ozdogan ◽  
Halime Kenar

Despite the fast development of technology in the world, diabetic foot wounds cause deaths and massive economical losses. Diabetes comes first among the reasons of non traumatic foot amputations. To reduce the healing time of these fast progressing wounds, effective wound dressings are in high demand. In our study, sheep small intestinal submucosa (SIS) based biocompatible sponges were prepared after SIS decellularization and their wound healing potential was investigated on full thickness skin defects in a diabetic rat model. The decellularized SIS membranes had no cytotoxic effects on human fibroblasts and supported capillary formation by HUVECs in a fibroblast-HUVEC co-culture. Glutaraldehyde crosslinked sponges of three different compositions were prepared to test in a diabetic rat model: gelatin (GS), gelatin: hyaluronic acid (GS:HA) and gelatin: hyaluronic acid: SIS (GS:HA:SIS). The GS:HA:SIS sponges underwent a 24.8 ± 5.4% weight loss in a 7-day in vitro erosion test. All sponges had a similar Young’s modulus under compression but GS:HA:SIS had the highest (5.00 ± 0.04 kPa). Statistical analyses of histopathological results of a 12-day in vivo experiment revealed no significant difference among the control, GS, GS:HA, and GS:HA:SIS transplanted groups in terms of granulation tissue thickness, collagen deposition, capillary vessel formation, and foreign body reaction (P > 0.05). On the other hand, in the GS:HA:SIS transplanted group 80% of the animals had a complete epidermal regeneration and this was significantly different than the control group (30%, P < 0.05). Preclinical studies revealed that the ECM of sheep small intestinal submucosa can be used as an effective biomaterial in diabetic wound healing.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Siwen Wang ◽  
Weiyi Wu ◽  
Yuhua Liu ◽  
Xinzhi Wang ◽  
Lin Tang ◽  
...  

Objective. The aim of the study is to evaluate the effects of multilaminated small intestinal submucosa (mSIS) combined with bone substitute material to repair peri-implant defects during guided bone regeneration procedures. Methods. Twelve implants were placed in bilateral lower premolars of three beagle dogs, and a peri-implant buccal bone defect (3 mm width and 4 mm height) was created at each implant site. A total of 12 sites were filled with a particulate bone substitute material and then randomly divided into three treatment groups: covered by mSIS membrane (mSIS group), covered by collagen membrane (BG group), and no treatment (control group), each group of four sites. After 12 weeks of healing, all of the animals were euthanized and dissected blocks were obtained for micro-computed tomography (micro-CT) and histological analyses. Results. Micro-CT results revealed similar horizontal width of augmented tissue and new bone formation between mSIS and BG groups (P<0.05). Histological analyses revealed that the differences in horizontal widths of newly formed bone and bone-to-implant contact between mSIS and BG groups were not significant (P>0.05). All of these parameters were significantly different from those in the control group (P<0.05). Conclusions. These findings confirmed that mSIS combined with the bone substitute material enhanced bone regeneration in peri-implant defects, in a manner similar to that of a collagen membrane.


2021 ◽  
Vol 26 ◽  
pp. 101916
Author(s):  
Anupama Ammulu Manne ◽  
Bharathi Arigela ◽  
Ajay Kumar Giduturi ◽  
Ravi K. Komaravolu ◽  
Ushakiranmayi Mangamuri ◽  
...  

2020 ◽  
Vol 231 ◽  
pp. 115734 ◽  
Author(s):  
Christian Viezzer ◽  
Rafael Mazzuca ◽  
Denise Cantarelli Machado ◽  
Maria Madalena de Camargo Forte ◽  
José Luis Gómez Ribelles

2003 ◽  
Vol 112 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Feng Zhang ◽  
Jian Zhang ◽  
Shuying Lin ◽  
Tanya Oswald ◽  
William Sones ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Weiyi Wu ◽  
Bowen Li ◽  
Yuhua Liu ◽  
Xinzhi Wang ◽  
Lin Tang

A barrier membrane (BM) is essential for guided bone regeneration (GBR) procedures. Absorbable BMs based on collagen have been widely applied clinically due to their excellent biocompatibility. The extracellular matrix (ECM) provides certain advantages that can compensate for the rapid degradation and insufficient mechanical strength of pure collagen membrane due to the porous scaffold structure. Recently, small intestinal submucosa (SIS), one of the most widely used ECM materials, has drawn much attention in bone tissue engineering. In this study, we adopted multilaminate SIS (mSIS) as a BM and evaluated its in vivo and in vitro properties. mSIS exhibited a multilaminate structure with a smooth upper surface and a significantly coarser bottom layer according to microscopic observation. Tensile strength was 13.10 ± 2.56 MPa. In in vivo experiments, we selected a rabbit mandibular defect model and subcutaneous implantation to compare osteogenesis and biodegradation properties with one of the most commonly used commercial collagen membranes. mSIS was retained for up to 3 months and demonstrated longer biodegradation time than commercial collagen membrane. Quantification of bone regeneration revealed significant differences in each group. Micro-computed tomography (micro-CT) revealed that the quantity and maturity of bones in the mSIS group were significantly higher than those in the blank control group (P < 0.05) and were similar to those in a commercial collagen membrane group (P > 0.05) at 4 and 12 weeks after surgery. Hematoxylin and eosin staining revealed large amounts of mature lamellar bone at 12 weeks in mSIS and commercial collagen membrane groups. Therefore, we conclude that mSIS has potential as a future biocompatible BM in GBR procedures.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nelson Bergonse Neto ◽  
Lianna Ferrari Jorge ◽  
Julio C. Francisco ◽  
Bruna Olandoski Erbano ◽  
Barbara Evelin Gonçalves Barboza ◽  
...  

Background. Surgical correction of tracheal defects is a complex procedure when the gold standard treatment with primary end-to-end anastomosis is not possible. An alternative treatment may be the use of porcine small intestinal submucosa (SIS). It has been used as graft material for bioengineering applications and to promote tissue regeneration. The aim of this study was to evaluate whether SIS grafts improved tracheal tissue regeneration in a rabbit model of experimental tracheostomy. Methods. Sixteen rabbits were randomized into two groups. Animals in the control group underwent only surgical tracheostomy, while animals in the SIS group underwent surgical tracheostomy with an SIS graft covering the defect. We examined tissues at the site of tracheostomy 60 days after surgery using histological analysis with hematoxylin and eosin (H&E) staining and analyzed the perimeter and area of the defect with Image-Pro® PLUS 4.5 (Media Cybernetics). Results. The average perimeter and area of the defects were smaller by 15.3% (p=0.034) and 21.8% (p=0.151), respectively, in the SIS group than in the control group. Histological analysis revealed immature cartilage, pseudostratified ciliated epithelium, and connective tissue in 54.5% (p=0.018) of the SIS group, while no cartilaginous regeneration was observed in the control group. Conclusions. Although tracheal SIS engraftment could not prevent stenosis in a rabbit model of tracheal injury, it produced some remarkable changes, efficiently facilitating neovascularization, reepithelialization, and neoformation of immature cartilage.


2018 ◽  
Vol 20 ◽  
pp. 7-17 ◽  
Author(s):  
Satarupa Sarkar ◽  
Amrita Chaudhary ◽  
Tanmoy Kumar Saha ◽  
Amit Kumar Das ◽  
Jyotirmoy Chatterjee

Sign in / Sign up

Export Citation Format

Share Document