Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model

2019 ◽  
Vol 34 (4) ◽  
pp. 476-486 ◽  
Author(s):  
Fang Li ◽  
Yijie Shi ◽  
Jia Liang ◽  
Liang Zhao
2021 ◽  
Vol 26 ◽  
pp. 101916
Author(s):  
Anupama Ammulu Manne ◽  
Bharathi Arigela ◽  
Ajay Kumar Giduturi ◽  
Ravi K. Komaravolu ◽  
Ushakiranmayi Mangamuri ◽  
...  

2020 ◽  
pp. 088532822096389
Author(s):  
Gamze Kara Magden ◽  
Cigdem Vural ◽  
Busra Yaprak Bayrak ◽  
Candan Yilmaz Ozdogan ◽  
Halime Kenar

Despite the fast development of technology in the world, diabetic foot wounds cause deaths and massive economical losses. Diabetes comes first among the reasons of non traumatic foot amputations. To reduce the healing time of these fast progressing wounds, effective wound dressings are in high demand. In our study, sheep small intestinal submucosa (SIS) based biocompatible sponges were prepared after SIS decellularization and their wound healing potential was investigated on full thickness skin defects in a diabetic rat model. The decellularized SIS membranes had no cytotoxic effects on human fibroblasts and supported capillary formation by HUVECs in a fibroblast-HUVEC co-culture. Glutaraldehyde crosslinked sponges of three different compositions were prepared to test in a diabetic rat model: gelatin (GS), gelatin: hyaluronic acid (GS:HA) and gelatin: hyaluronic acid: SIS (GS:HA:SIS). The GS:HA:SIS sponges underwent a 24.8 ± 5.4% weight loss in a 7-day in vitro erosion test. All sponges had a similar Young’s modulus under compression but GS:HA:SIS had the highest (5.00 ± 0.04 kPa). Statistical analyses of histopathological results of a 12-day in vivo experiment revealed no significant difference among the control, GS, GS:HA, and GS:HA:SIS transplanted groups in terms of granulation tissue thickness, collagen deposition, capillary vessel formation, and foreign body reaction (P > 0.05). On the other hand, in the GS:HA:SIS transplanted group 80% of the animals had a complete epidermal regeneration and this was significantly different than the control group (30%, P < 0.05). Preclinical studies revealed that the ECM of sheep small intestinal submucosa can be used as an effective biomaterial in diabetic wound healing.


2020 ◽  
Vol 231 ◽  
pp. 115734 ◽  
Author(s):  
Christian Viezzer ◽  
Rafael Mazzuca ◽  
Denise Cantarelli Machado ◽  
Maria Madalena de Camargo Forte ◽  
José Luis Gómez Ribelles

2018 ◽  
Vol 20 ◽  
pp. 7-17 ◽  
Author(s):  
Satarupa Sarkar ◽  
Amrita Chaudhary ◽  
Tanmoy Kumar Saha ◽  
Amit Kumar Das ◽  
Jyotirmoy Chatterjee

2021 ◽  
Vol 18 ◽  
Author(s):  
Saima Tufail ◽  
Muhammad Irfan Siddique ◽  
Muhammad Sarfraz ◽  
Muhammad Farhan Sohail ◽  
Muhammad Nabeel Shahid ◽  
...  

Introduction: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. Aim: Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. Methods: The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. Results: The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. Conclusion: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


Sign in / Sign up

Export Citation Format

Share Document