Organizational Dissent Dynamics in Universities: Simulations With a System Dynamics Model

2019 ◽  
Vol 33 (3) ◽  
pp. 419-450
Author(s):  
Raafat Mahmoud Zaini ◽  
Michael B. Elmes ◽  
Oleg V. Pavlov ◽  
Khalid Saeed

This article investigates how universities may evolve into high- or low-performance institutions by taking different approaches to dissent tolerance and processing. We explore different dissent management policies related to growth and productivity. We experiment with a dynamic model of dissent creation and processing in organizations presented in an earlier paper by the authors. Computer simulations with the model suggest that as universities attempt to improve their performance through growth, they may devolve into low-performance institutions with degrading management responsiveness and low organizational productivity. Only when organizations invest in their dissent processing capability will they engage their members productively for improving performance.

2010 ◽  
Vol 20 (2) ◽  
pp. 59-62
Author(s):  
Patrick Einzinger ◽  
Günther Zauner ◽  
G. Ganjeizadeh-Rouhani

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Urmila Basu Mallick ◽  
Marja H. Bakermans ◽  
Khalid Saeed

Using Indian free-ranging dogs (FRD) as a case study, we propose a novel intervention of social integration alongside previously proposed methods for dealing with FRD populations. Our study subsumes population dynamics, funding avenues, and innovative strategies to maintain FRD welfare and provide societal benefits. We develop a comprehensive system dynamics model, featuring identifiable parameters customizable for any management context and imperative for successfully planning a widescale FRD population intervention. We examine policy resistance and simulate conventional interventions alongside the proposed social integration effort to compare monetary and social rewards, as well as costs and unintended consequences. For challenging socioeconomic ecological contexts, policy resistance is best overcome by shifting priority strategically between social integration and conventional techniques. The results suggest that social integration can financially support a long-term FRD intervention, while transforming a “pest” population into a resource for animal-assisted health interventions, law enforcement, and conservation efforts.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


Sign in / Sign up

Export Citation Format

Share Document