One-pot hydrothermal synthesis of polyaniline nanofibers/reduced graphene oxide nanocomposites and their supercapacitive properties

2019 ◽  
Vol 31 (9-10) ◽  
pp. 1238-1247 ◽  
Author(s):  
Shanxin Xiong ◽  
Yuancheng Wang ◽  
Jia Chu ◽  
Xiaoqin Wang ◽  
Runlan Zhang ◽  
...  

In this article, polyaniline nanofibers/reduced graphene oxide (PANI-NFs/rGO) nanocomposites were prepared by a one-pot hydrothermal method. Under the condition of high temperature and high pressure, graphene oxide (GO) was reduced to rGO and aniline was in-situ polymerized to form PANI-NFs using ammonium persulfate as oxidant. The morphologies and structures of PANI-NFs/rGO nanocomposites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and Raman analysis. The results show that PANI-NFs uniformly grow on the surfaces of rGO sheets, which can act as spacers to prevent the aggregation of rGO. Combining with FTIR and Raman analysis, it can be concluded that PANI-NFs/rGO nanocomposites are successfully prepared. The electrochemical performances of PANI-NFs/rGO nanocomposites were tested by cyclic voltammetry and galvanostatic charge–discharge. The PANI-NFs/rGO nanocomposites exhibit superior electrochemical performances compared to the PANI-NFs. With 10 wt% of GO loaded, the PANI-NFs/rGO nanocomposite exhibits highest specific capacitance of 942 F g−1 at a current density of 1 A g−1. The PANI-NFs/rGO nanocomposites also demonstrate good rate capacity and high cycling stability under the high discharging current density (10 A g−1), the specific capacitance can still reach to 680 F g−1. After 1000 charge–discharge cycling at a current density of 5 A g−1, 78% of specific capacitance can be retained. The enhanced capacitive performances can be attributed to the facile electron conduction pathway brought by the even distribution of highly conductive rGO nanosheets.

RSC Advances ◽  
2014 ◽  
Vol 4 (93) ◽  
pp. 51619-51623 ◽  
Author(s):  
Gyoung Hwa Jeong ◽  
Hae-Min Lee ◽  
Heewoong Lee ◽  
Chang-Koo Kim ◽  
Yuanzhe Piao ◽  
...  

We synthesized Co(OH)2/graphene composites from graphite without a graphene oxide (GO) step. The Co(OH)2/graphene composite exhibited a specific capacitance of 960 F g−1 at a current density of 10 A g−1.


2013 ◽  
Vol 785-786 ◽  
pp. 783-786 ◽  
Author(s):  
Hong Juan Wang ◽  
Dong Zhou ◽  
Feng Peng ◽  
Hao Yu

Graphene with different reduction degrees was prepared by fast thermally reduction of exfoliated graphite oxide (GO) at 200-700 °C. Structure and the electrochemical capacitive performance were characterized and measured. The results show that different thermal reduction temperatures can obtain reduced graphene oxide (rGO) with different reduction degrees and influence the electrochemical capacitive performance. The rGO-400 by thermal treat at 400 °C exhibits a significantly high specific capacitance of 407 F g-1 in 6.0 M KOH electrolyte at a current density of 0.4 A g-1 and outstanding cyclic stability with 96.1% of its origin specific capacitance maintained after 2000 cycles at the current density of 10 A g-1 in GCD test.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1245 ◽  
Author(s):  
Wooree Jang ◽  
Dae-Young Jeon ◽  
Youn-Sik Lee ◽  
Hye Young Koo

One-pot synthesis of mixed-valence manganese oxide (MnOx)/potassium ion-doped reduced graphene oxide (rGO) composites for efficient electrochemical supercapacitors is introduced. Using manganese nitrate and potassium permanganate as co-precursors for the MnOx and by directly annealing the rGO without tedious purification steps, as described herein, MnOx/rGO composites with a high specific capacitance of 1955.6 F g−1 at a current density of 1 A g−1 are achieved. It is found that the presence of potassium ions helps in the development of mixed-valence MnOx on the surface of the rGO.


2013 ◽  
Vol 785-786 ◽  
pp. 779-782
Author(s):  
Hong Juan Wang ◽  
Dong Zhou ◽  
Feng Peng ◽  
Hao Yu

A series of reduced graphene oxide/cobalt oxide composites (Co3O4/rGO)were fabricated via a chemical precipitation approach and subsequent calcination in Ar atmosphere. Experimental results show that Co3O4/rGO composite with 86 wt% of Co3O4 loading exhibits the optimum specific capacitance of 240 F g-1 in 6.0 M KOH electrolyte at the current density of 0.8 A g-1, excellent quick charge-discharge performance and outstanding cyclic stability with 2.3% of its specific capacitance increase after 2400 cycles at the current density of 8 A g-1 in GCD test, exhibiting significant potential of Co3O4 /rGO composite in the application of supercapacitors.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3509 ◽  
Author(s):  
Xinyu Lei ◽  
Mu Li ◽  
Min Lu ◽  
Xiaohui Guan

A new carbon-coated nickel sulfides electrode material (NST/CNTs@C) has been synthesized through an easy-to-operate process: NiS2/CNTs which was prepared by a hydrothermal method reacted with BTC (1,3,5-benzenetricarboxylic acid) under the condition of water bath heating to obtain the precursor, and then the precursor was calcined in 450 °C under a nitrogen atmosphere to obtain NST/CNTs@C. The electrochemical performance of NST/CNTs@C has been greatly improved because the formation of a carbon-coated layer effectively increased the specific surface area, reduced the charge transport resistance and inhibited the morphological change of nickel sulfides in the charge–discharge process. Compared with pure NiS2 and NiS2/CNTs, NST/CNTs@C presented great specific capacitance (620 F·g−1 at a current density of 1 A·g−1), better cycle stability (49.19% capacitance retention after 1000 cycles) and more superior rate capability (when the current density was raised to 10 A·g−1 the specific capacitance remained 275 F·g−1).


2011 ◽  
Vol 239-242 ◽  
pp. 1372-1375 ◽  
Author(s):  
Ya Kun Zhang ◽  
Jian Ling Li ◽  
Fei Gao ◽  
Xin Dong Wang

A layer of MnO2 was loaded between the SnO2/Ti substrate and the layer of PANI via a potentiodynamic electrodeposition. Electrochemical tests such as cyclic voltammetry and galvanostatic charge/discharge were applied to investigate the performance of the electrodes. The morphologies of the electrodes were also observed to identify the effect of the MnO2 layer. The specific capacitance of PANI with MnO2 reached to 601.48 F g-1 at a current density of 0.1 mA cm-2, which is 1.69 times as that of PANI electrodes without MnO2 layer. This gratifying result may due to the synergistic effect between MnO2 layer and PANI.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3588 ◽  
Author(s):  
Xiao-Ming Yue ◽  
Zhao-Yang An ◽  
Mei Ye ◽  
Zi-Jing Liu ◽  
Cui-Cui Xiao ◽  
...  

Coal-based porous materials for supercapacitors were successfully prepared using Taixi anthracite (TXA) by multi-stage activation. The characterization and electrochemical tests of activated carbons (ACs) prepared in different stages demonstrated that the AC from the third-stage activation (ACIII) shows good porous structures and excellent electrochemical performances. ACIII exhibited a fine specific capacitance of 199 F g−1 at a current density of 1 A g−1 in the three-electrode system, with 6 mol L−1 KOH as the electrolyte. The specific capacitance of ACIII remained 190 F g−1 even despite increasing the current density to 5 A g−1, indicating a good rate of electrochemical performance. Moreover, its specific capacitance remained at 98.1% of the initial value after 5000 galvanostatic charge-discharge (GCD) cycle tests at a current density of 1 A g−1, suggesting that the ACIII has excellent cycle performance as electrode materials for supercapacitors. This study provides a promising approach for fabricating high performance electrode materials from high-rank coals, which could facilitate efficient and clean utilization of high-rank coals.


MRS Advances ◽  
2019 ◽  
Vol 4 (13) ◽  
pp. 777-782 ◽  
Author(s):  
Rahul Singhal ◽  
Justin Fagnoni ◽  
David Thorne ◽  
Peter K. LeMaire ◽  
Xavier Martinez ◽  
...  

ABSTRACTGraphene oxide (GO)/MnO2 nanocomposites were synthesized by adding KMnO4 in a solution of water and ethanol (3:1), containing 10 mg of GO. Brown precipitates were obtained after a continuous stirring for 1 hr. The precipitates were then washed with deionized water (DI) water and dried to obtain the MnO2-GO nanocomposites. Pure MnO2 was also synthesized using the same method without GO for the comparison. X-ray diffraction pattern confirm δ-MnO2 type of MnO2 with birnessite type MnO2 structure. The TEM images show the average diameter of MnO2 nanorods as 15 nm. Electrochemical characterizations were carried out in an aqueous solution of 3M KOH. Charge-discharge studies were carried out between 1A/g to 20 A/g current range. The MnO2-GO nanocomposites showed improved electrochemical performances. The capacitance of MnO2 and MnO2-GO electrodes was found to be as 300 F/g, and 350 F/g, respectively at a current of 0.5 A/g.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7793
Author(s):  
Arjunan Ariharan ◽  
Sung-Kon Kim

Electrochemical energy storage (EES) systems are attracting research attention as an alternative to fossil fuels. Advances in the design and composition of energy storage materials are particularly significant. Biomass waste-derived porous carbons are particularly suitable for use in EES systems as they are capable of tuning pore networks from hierarchical porous structures with high specific surface areas. These materials are also more sustainable and environmentally friendly and less toxic and corrosive than other energy storage materials. In this study, we report the creation of a three-dimensional hierarchical porous carbon material derived from betelnut shells. The synthesized three-dimensional (3D) hierarchical porous carbon electrode showed a specific capacitance of 290 F g−1 using 1 M KOH as an electrolyte at a current density of 1 A g−1 in three-electrode systems. Moreover, it offered a high charge/discharge stability of 94% over 5000 charge–discharge cycles at a current density of 5 A g−1. Two-electrode symmetric systems show a specific capacitance of 148 F g−1, good cyclic stability of 90. 8% for 5000 charge-discharge cycles, and high energy density of 41 Wh Kg−1 at the power density of 483 W Kg−1 in aqueous electrolyte.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Chengcheng Zhang ◽  
Changjian Peng ◽  
Biao Gao ◽  
Xiang Peng ◽  
Xuming Zhang ◽  
...  

Polyaniline/carbon doped TiO2composite nanotube arrays (PANI/C-TiO2NTAs) have been prepared successfully by electrodepositing PANI in C-TiO2NTAs which were prepared by directly annealing the as-anodized TiO2NTAs under Ar atmosphere. The organic residual in the TiO2NTAs during the process of anodization acts as carbon source and is carbonized in Ar atmosphere to manufacture the C-TiO2NTAs. The specific capacitance of the PANI/C-TiO2electrode is 120.8 mF cm−2at a current density of 0.1 mA cm−2and remains 104.3 mF cm−2at a current density of 2 mA cm−2with the calculated rate performance of 86.3%. After 5000 times of charge-discharge cycling at a current density of 0.2 mA cm−2, the specific capacitance retains 88.7% compared to the first cycle. All these outstanding performances of the as-prepared PANI/C-TiO2NTAs indicate it will be a promising electrode for supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document