Synthesis and characterization of new poly(diketone imide)s derived from 1,4-bis(3,4-dicarboxybenzoyl)benzene dianhydride and various diamines

2020 ◽  
Vol 32 (9) ◽  
pp. 1043-1051
Author(s):  
Lu Kuang ◽  
Wei-Hong Wei ◽  
Xiao-Yan Sang ◽  
Yang Pan ◽  
Cheng Song

1,4-Bis(3,4-dicarboxybenzoyl)benzene dianhydride, an aromatic bis(ketone anhydride) monomer, was synthesized by the Friedel–Crafts reaction of terephthaloyl dichloride and o-xylene, followed by the oxidation of the intermediate tetramethylated compound and cyclodehydration of the resulting tetraacid. A series of new poly(diketone imide)s (PDKIs) were prepared from this dianhydride with various aromatic diamines via a conventional two-stage process that included ring-opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization. Most of the PDKIs through chemical imidization were soluble in aprotic amide solvents, such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, and so on. The resulting PDKIs had good thermal property with the glass transition temperature of 203–275°C, the temperature at 5% weight loss of 500–539°C, and the residue of 51–60% at 800°C in nitrogen. Additionally, strong and flexible PDKI films obtained by thermal imidization exhibited outstanding mechanical property with the tensile strength of 88.8–158.5 MPa, tensile modulus of 1.9–3.5 GPa, and elongation at breakage of 7–21%.

2019 ◽  
Vol 32 (5) ◽  
pp. 483-493 ◽  
Author(s):  
Zi-Yang Zhang ◽  
Zhen-Zhong Huang ◽  
Yang Pan ◽  
Cheng Song

A new diamine bearing flexible ether, rigid pyridine, and bulky anthrone pendent group, 10,10-bis[4-(4-amino-2-pyridinoxy)phenyl]-9(10 H)-anthrone (BAPPA), was prepared in three steps from anthrone. BAPPA was reacted with six conventional aromatic dianhydrides in N, N-dimethylacetamide (DMAc) to form the corresponding new poly(ether imide)s (PEIs) via the poly(ether amic acid) (PEAA) precursors with inherent viscosities ranging from 0.85 dL g−1 to 1.26 dL g−1 and thermal imidization. All the PEAAs could be cast from DMAc solution and thermally converted into transparent, flexible, and tough PEI films with tensile strength of 72.2–112.4 MPa, tensile modulus of 1.8–2.1 GPa, and elongation at break of 10–18%. These PEIs were predominantly amorphous and displayed excellent thermal stability with the glass transition temperature of 290–388°C, the 5% weight loss temperature of 480–514°C, and the residue of 68–43% at 800°C in nitrogen. The PEIs derived from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride and 4,4′-hexafluoroisopropylidenediphathalic anhydride exhibited excellent solubility in organic solvents such as N-methyl-2-pyrrolidinone, DMAc, N, N-dimethylformamide, pyridine, and even in tetrahydrofuran. Meanwhile, these PEIs also exhibited high optical transparency with the ultraviolet cutoff wavelength in the 374–427 nm range and the wavelength of 80% transparency in the range of 468–493 nm.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 491-499
Author(s):  
Fukai Yang ◽  
Hao Yu ◽  
Yuyuan Deng ◽  
Xinyu Xu

Abstract In this article, five kinds of soybean oil-based polyols (polyol-E, polyol-P, polyol-I, polyol-B, and polyol-M) were prepared by ring-opening the epoxy groups in epoxidized soybean oil (ESO) with ethyl alcohol, 1-pentanol, isoamyl alcohol, p-tert-butylphenol, and 4-methoxyphenol in the presence of tetrafluoroboric acid as the catalyst. The SOPs were characterized by FTIR, 1H NMR, GPC, viscosity, and hydroxyl numbers. Compared with ESO, the retention time of SOPs is shortened, indicating that the molecular weight of SOPs is increased. The structure of different monomers can significantly affect the hydroxyl numbers of SOPs. Due to the large steric hindrance of isoamyl alcohol, p-hydroxyanisole, and p-tert-butylphenol, SOPs prepared by these three monomers often undergo further dehydration to ether reactions, which consumes the hydroxyl of polyols, thus forming dimers and multimers; therefore, the hydroxyl numbers are much lower than polyol-E and polyol-P. The viscosity of polyol-E and polyol-P is much lower than that of polyol-I, polyol-B, and polyol-M. A longer distance between the molecules and the smaller intermolecular force makes the SOPs dehydrate to ether again. This generates dimer or polymers and makes the viscosity of these SOPs larger, and the molecular weight greatly increases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Evelyn Carolina Martínez Ceballos ◽  
Ricardo Vera Graziano ◽  
Gonzalo Martínez Barrera ◽  
Oscar Olea Mejía

Poly(dichlorophosphazene) was prepared by melt ring-opening polymerization of the hexachlorocyclotriphosphazene. Poly[bis(2-hydroxyethyl-methacrylate)-phosphazene] and poly[(2-hydroxyethyl-methacrylate)-graft-poly(lactic-acid)-phosphazene] were obtained by nucleophilic condensation reactions at different concentrations of the substituents. The properties of the synthesized copolymers were assessed by FTIR,1H-NMR and31P-NMR, thermal analysis (DSC-TGA), and electron microscopy (SEM). The copolymers have a block structure and show twoTg's below room temperature. They are stable up to a temperature of 100°C. The type of the substituents attached to the PZ backbone determines the morphology of the polymers.


2021 ◽  
Vol 1028 ◽  
pp. 346-351
Author(s):  
Soni Setiadji ◽  
Zulfi Mofa Agasa ◽  
Diba G Auliya ◽  
Fitrilawati ◽  
Norman Syakir ◽  
...  

Duration of use and injectability are external factors for Polydimethylsiloxane (PDMS) that needs to be considered when PDMS utilized as a vitreous substituted liquid in vitreoretinal surgery. In general, PDMS which has been used as a substitute for vitreous humour is PDMS with a low viscosity in the value about 1000 cSt and a high viscosity at a value of about 5000 cSt. Various deficiencies have been encountered from low and high viscosity of PDMS, causing research to be continued to obtain PDMS which has suitable properties as a substitute for vitreous humour. One of them is research to obtain medium viscosity of PDMS with a viscosity value of about 2000 cSt. Here, we reported synthesis and characterization of PDMS with medium viscosity in ranges from 1800 to 2600 mPas. PDMS was synthesized through Ring-Opening Polymerization (ROP) pathway using the monomer of Octamethylcyclotetrasiloxane (D4) and the chain terminator of Hexamethyldisiloxane (MM). Various concentrations of potassium hydroxide (KOH) of 3, 4, 6 and 8 %(w/v) were applied as initiator to form gel of PDMS. All synthesized PDMS samples were identified to have viscosity values of 1800-2600 mPas, refractive index values of 1.4042-1.4044 and surface tension values of 22-23 mN/m. Meanwhile, the results of Fourier-Transform Infrared (FTIR) measurement showed that the absorption peaks were similar to that of our previous report.


Polymer ◽  
2006 ◽  
Vol 47 (11) ◽  
pp. 3774-3783 ◽  
Author(s):  
Xiaolong Wang ◽  
Yan-Feng Li ◽  
Tao Ma ◽  
Shujiang Zhang ◽  
Chenliang Gong

Sign in / Sign up

Export Citation Format

Share Document