A multiple slicing approach to automatic generation of parting curves

Author(s):  
Alan C Lin ◽  
Nguyen Huu Quang

A new slicing algorithm that uses multiple sets of cutting planes to automatically determine parting curves for three-dimensional parts is proposed. In this algorithm, one set of cutting planes is used to generate the slicing profiles, and two others are used to determine the intersection points with the inner and outer loops of the parting curves. The algorithm provides a highly effective solution for handling complicated models that contain free-form surfaces. The features of the algorithm are highlighted in three case studies using tessellated geometry in STL file format as the input. The resultant parting curves overcome many problems inherent in the current methods and can be used by various downstream computer-aided design systems for three-dimensional mold design.

Author(s):  
Mikola Lysenko ◽  
Roshan D’Souza ◽  
Keyvan Rahmani

In this paper a new hardware accelerated method is presented to evaluate the machinability of free-form surfaces. This method works on tessellated models that are commonly used by computer aided design (CAD) systems to render three-dimensional shaded images of solid models. Modern graphics processing units (GPUs) can be programed in hardware to accelerate specialized rendering techniques. In this research, we have developed new algorithms that utilize the programmability of GPUs to evaluate the machinability of free-form surfaces. The method runs in real-time on fairly inexpensive hardware (<$600), and performs well regardless of the surface type. The complexity of the method is dictated by the size of the projected view of the model. The proposed method can be used as a plug-in in a CAD system to evaluate the manufacturability of a part at early design stages. The efficiency and the speed of the proposed method are demonstrated on some complex objects.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Diego Andrade ◽  
Ved Vyas ◽  
Kenji Shimada

While modern computer aided design (CAD) systems currently offer tools for generating simple patterns, such as uniformly spaced rectangular or radial patterns, these tools are limited in several ways: (1) They cannot be applied to free-form geometries used in industrial design, (2) patterning of these features happens within a single working plane and is not applicable to highly curved surfaces, and (3) created features lack anisotropy and spatial variations, such as changes in the size and orientation of geometric features within a given region. In this paper, we introduce a novel approach for creating anisotropic patterns of geometric features on free-form surfaces. Complex patterns are generated automatically, such that they conform to the boundary of any specified target region. Furthermore, user input of a small number of geometric features (called “seed features”) of desired size and orientation in preferred locations could be specified within the target domain. These geometric seed features are then transformed into tensors and used as boundary conditions to generate a Riemannian metric tensor field. A form of Laplace's heat equation is used to produce the field over the target domain, subject to specified boundary conditions. The field represents the anisotropic pattern of geometric features. This procedure is implemented as an add-on for a commercial CAD package to add geometric features to a target region of a three-dimensional model using two set operations: union and subtraction. This method facilitates the creation of a complex pattern of hundreds of geometric features in less than 5 min. All the features are accessible from the CAD system, and if required, they are manipulable individually by the user.


Author(s):  
Neeraj Panhalkar ◽  
Ratnadeep Paul ◽  
Sam Anand

Additive manufacturing (AM) is widely used in aerospace, automobile, and medical industries for building highly accurate parts using a layer by layer approach. The stereolithography (STL) file is the standard file format used in AM machines and approximates the three-dimensional (3D) model of parts using planar triangles. However, as the STL file is an approximation of the actual computer aided design (CAD) surface, the geometric errors in the final manufactured parts are pronounced, particularly in those parts with highly curved surfaces. If the part is built with the minimum uniform layer thickness allowed by the AM machine, the manufactured part will typically have the best quality, but this will also result in a considerable increase in build time. Therefore, as a compromise, the part can be built with variable layer thicknesses, i.e., using an adaptive layering technique, which will reduce the part build time while still reducing the part errors and satisfying the geometric tolerance callouts on the part. This paper describes a new approach of determining the variable slices using a 3D k-d tree method. The paper validates the proposed k-d tree based adaptive layering approach for three test parts and documents the results by comparing the volumetric, cylindricity, sphericity, and profile errors obtained from this approach with those obtained using a uniform slicing method. Since current AM machines are incapable of handling adaptive slicing approach directly, a “pseudo” grouped adaptive layering approach is also proposed here. This “clustered slicing” technique will enable the fabrication of a part in bands of varying slice thicknesses with each band having clusters of uniform slice thicknesses. The proposed k-d tree based adaptive slicing approach along with clustered slicing has been validated with simulations of the test parts of different shapes.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden. &nbsp; A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


2011 ◽  
Author(s):  
Takahiro Makiyama ◽  
Toshiya Teramae ◽  
Toshimi Sato ◽  
Francisco Chinesta ◽  
Yvan Chastel ◽  
...  

Author(s):  
Antonio Piratelli-Filho ◽  
Alberto José Alvares ◽  
Rosenda Valdés Arencibia

This work presents a systematization method for digitization of mechanical parts with three-dimensional (3D) laser scanner using the process mapping method. The application involves the use of the IDEFØ methodology of process mapping to address the sequence of steps required to obtain the computer-aided design (CAD) model of the measured part. The variables involved in the setup and measurement with 3D laser scanner were investigated and applied to regular and free-form parts, and the parameter geometry, texture, light reflection and procedure of data acquisition were considered in the analysis. The software commands used to create the CAD models were also included and the ones related to mesh and surface creation were detailed. The systematized measurement planning was graphi graphically presented, and it proved useful to operators during the digitization process.


Author(s):  
J McCartney ◽  
B K Hinds

In the apparel field, there is the problem of creating a design with respect to an underlying standard form. Instead of applying general-purpose three-dimensional computer aided design systems to such tasks it is proposed that design can be carried more efficiently with bespoke design systems. These can be targeted to deal with the problems of accurately defining the offset surfaces which comprise the garment. Such a system is introduced and the methods of data entry are discussed. Position on the three-dimensional form is determined using a digitizer tablet and fit with respect to the form is specified by an offset dimension. It is shown that complex garment pieces with variable fit can be quickly specified within the system.


1987 ◽  
Vol 109 (1) ◽  
pp. 87-94 ◽  
Author(s):  
S. Dubowsky ◽  
J. F. Deck ◽  
H. Costello

An effective method is presented for modeling the full three-dimensional dynamics of high performance spatial machine systems, including the vibrations of their links, supporting structure and enclosures, and impacts in their connection clearances. The method combines four-by-four matrix modeling techniques with finite-element techniques. The system’s elements can be described in rich detail, including detailed models of the internal structure of the connections, yet the dynamic calculations are performed efficiently. The method is formulated for implementation on computer-aided design systems. Examples are presented.


Author(s):  
Günay Orbay ◽  
Mehmet Ersın Yümer ◽  
Levent Burak Kara

AbstractThe hierarchical construction of solid models with current computer-aided design systems provide little support in creating and editing free-form surfaces commonly encountered in industrial design. In this work, we propose a new design exploration method that enables sketch-based editing of free-form surface geometries where specific modifications can be applied at different levels of detail. This multilevel detail approach allows the designer to work from existing models and make alterations at coarse and fine representations of the geometry, thereby providing increased conceptual flexibility during modeling. At the heart of our approach lies a multiscale representation of the geometry obtained through a spectral analysis on the discrete free-form surface. This representation is accompanied by a sketch-based surface editing algorithm that enables edits to be made at different levels. The seamless transfer of modifications across different levels of detail facilitates a fluid exploration of the geometry by eliminating the need for a manual specification of the shape hierarchy. We demonstrate our method with several design examples.


2013 ◽  
Vol 275-277 ◽  
pp. 2635-2639 ◽  
Author(s):  
Nguyen Huu Quang ◽  
Alan C. Lin

In computer-aided design for moldings, automatic generation of side-cores is a crucial design task that has an influence on the entire mold structure and manufacturing cost. This paper proposes a synthetic approach for creating the side-cores of free-form NURBS surface models. Based on the geometric properties of entities, surfaces of undercut features which are molded for side-cores are identified. After determining the withdrawal directions for each group of undercut’s surface features, the number of side-cores is optimized. The heads and the bodies of side-cores are finally obtained through the combination of the Boolean operation and 3D oriented extrusion. The algorithm is efficiently for both protruded and indented portions of undercut features. A complex industrial part is used to demonstrate the performance and robustness of the proposed algorithm. Since the approach is generic in nature, it is easy to be applied to any complex geometry in 3D mold design.


Sign in / Sign up

Export Citation Format

Share Document