Sketch-based shape exploration using multiscale free-form surface editing

Author(s):  
Günay Orbay ◽  
Mehmet Ersın Yümer ◽  
Levent Burak Kara

AbstractThe hierarchical construction of solid models with current computer-aided design systems provide little support in creating and editing free-form surfaces commonly encountered in industrial design. In this work, we propose a new design exploration method that enables sketch-based editing of free-form surface geometries where specific modifications can be applied at different levels of detail. This multilevel detail approach allows the designer to work from existing models and make alterations at coarse and fine representations of the geometry, thereby providing increased conceptual flexibility during modeling. At the heart of our approach lies a multiscale representation of the geometry obtained through a spectral analysis on the discrete free-form surface. This representation is accompanied by a sketch-based surface editing algorithm that enables edits to be made at different levels. The seamless transfer of modifications across different levels of detail facilitates a fluid exploration of the geometry by eliminating the need for a manual specification of the shape hierarchy. We demonstrate our method with several design examples.

2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden.   A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


Author(s):  
Mikola Lysenko ◽  
Roshan D’Souza ◽  
Keyvan Rahmani

In this paper a new hardware accelerated method is presented to evaluate the machinability of free-form surfaces. This method works on tessellated models that are commonly used by computer aided design (CAD) systems to render three-dimensional shaded images of solid models. Modern graphics processing units (GPUs) can be programed in hardware to accelerate specialized rendering techniques. In this research, we have developed new algorithms that utilize the programmability of GPUs to evaluate the machinability of free-form surfaces. The method runs in real-time on fairly inexpensive hardware (<$600), and performs well regardless of the surface type. The complexity of the method is dictated by the size of the projected view of the model. The proposed method can be used as a plug-in in a CAD system to evaluate the manufacturability of a part at early design stages. The efficiency and the speed of the proposed method are demonstrated on some complex objects.


Author(s):  
Jack Chang ◽  
Mark Ganter ◽  
Duane Storti

Abstract Computer-aided design/manufacturing (CAD/CAM) systems intended to support automated design and manufacturing applications such as shape generation and solid free-form fabrication (SFF) must provide not only methods for creating and editing models of objects to be manufactured, but also methods for interrogating the models. Interrogation refers to any process that derives information from the model. Typical interrogation tasks include determine surface area, volume or inertial properties, computing surface points and normals for rendering, and computing slice descriptions for SFF. While currently available commercial modeling systems generally employ a boundary representation (B-rep) implementation of solid modeling, research efforts have considered implicit modeling schemes as a potential source of improved robustness. Implicit implementations are available for a broad range of modeling operations, but interrogation operations have been widely considered too costly for many applications. This paper describes a method based on interval analysis for interrogating implicit solid models that aims at achieving both robustness and efficiency.


2011 ◽  
Author(s):  
Takahiro Makiyama ◽  
Toshiya Teramae ◽  
Toshimi Sato ◽  
Francisco Chinesta ◽  
Yvan Chastel ◽  
...  

2004 ◽  
Vol 4 (3) ◽  
pp. 206-217 ◽  
Author(s):  
Vei-Chung Liang ◽  
Christiaan J. J. Paredis

During conceptual design of systems, the emphasis is on generating the system architecture: the configuration of sub-systems and the interactions between them. Ports, as locations of intended interaction, play an important role at this stage of design. They are convenient abstractions for representing the intended exchange of signals, energy or material; they can be applied at different levels of detail, across different energy domains, and to all aspects of design: form, function, and behavior. But to play this versatile role, ports need to be represented in an unambiguous yet flexible fashion, accommodating the differences in vocabulary and approach across different disciplines and perspectives. In this article, we introduce the semantic structure for such an unambiguous representation: a port ontology. The ontology formalizes the conceptualization of ports such that engineers and computer aided design applications can reason about component connections and interactions in system configuration. It defines ports in terms of form, function and behavior attributes and further includes axioms that can be used to support a variety of engineering design tasks, such as port refinement, port compatibility checking, and the instantiation of interaction models. A LEGO example is used to illustrate the ontology and its applications in conceptual design.


Author(s):  
R J Cripps ◽  
A A Ball

This paper reviews the current graphical tools available for checking the quality of CAD/CAM (computer aided design/manufacture) surface models and highlights the difficulties of their use. A new range of geometrically based tools is proposed, especially designed for the task of enabling design engineers to visually assess the quality of free-form surfaces at a workstation screen to within an accuracy comparable with working to full-scale drawings. The tools should be easy to use without recourse to understanding the underlying mathematical theory of surface differential geometry on which the techniques are ultimately based.


2000 ◽  
Author(s):  
Pietro Buttolo ◽  
Paul Stewart ◽  
Yifan Chen

Abstract Transferring geometrical information between Computer-Aided Design models and physical prototypes is a time-intensive task and as such is one of the critical bottlenecks in the automotive design process. Sculpting of free-form surfaces in force enabled CAD applications could bridge the gap between digital models and certain physical prototypes. In this paper a novel force-enabled surface manipulation method called stick-to-surface/stick-to-pen is presented. During sculpting, the haptic device is constrained to follow the virtual surface, and simultaneously the surface is controlled to follow the device. The trade-off between which follows which is managed by partitioning the Cartesian space into a browsing subspace and a manipulation subspace.


2014 ◽  
Vol 474 ◽  
pp. 3-8
Author(s):  
Ivan Baránek ◽  
Ivan Buranský

The article is focused on development trends in the field of design and production of free form surfaces (FFS), which are maily connected with computer support of these operations. There is a description of the conversion of conventional teaching into online education under the terms of Institute of production technologies of FMST STU in Trnava. The chain of knowledge that is required for design, production and checking processes of free form surfaces was created. The chain was applied into the curriculum of the following study programmes: Computer Aided Production Technologies and Computer Aided Design and Manufacturing. The checking model for education quality was created and applied for each subject.


Author(s):  
Alan C Lin ◽  
Nguyen Huu Quang

A new slicing algorithm that uses multiple sets of cutting planes to automatically determine parting curves for three-dimensional parts is proposed. In this algorithm, one set of cutting planes is used to generate the slicing profiles, and two others are used to determine the intersection points with the inner and outer loops of the parting curves. The algorithm provides a highly effective solution for handling complicated models that contain free-form surfaces. The features of the algorithm are highlighted in three case studies using tessellated geometry in STL file format as the input. The resultant parting curves overcome many problems inherent in the current methods and can be used by various downstream computer-aided design systems for three-dimensional mold design.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


Sign in / Sign up

Export Citation Format

Share Document