Optimum performance evaluation during machining of Al6061/cenosphere AMCs using TOPSIS and VIKOR based multi-criteria approach

Author(s):  
Abhijit Dey ◽  
Mrinal Shrivastav ◽  
Pawan Kumar

Selection of optimal processing condition is an issue associate with multi-criteria decision making (MCDM) which can be influenced by several conflicting processing variables. The present study have been devoted to the implementation of TOPSIS algorithm in coordination with the VIKOR technique to yield an optimistic processing criteria while machining of metal matrix composites under electro-discharge machining process. A decision-making module has been developed for selection of optimum processing conditions under specified machining conditions. An experimental investigation was performed based on Taguchi’s orthogonal array on the newly prepared AA6061-cenosphere MMCs to analyze the sensitivity of EDM attributes to the process parameters such as peak current, pulse on time, the percentage of reinforcement, and flushing pressure. The weighing factors for the criteria were determined using AHP method. The results concluded that both the applied MCDM approaches, TOPSIS and VIKOR accrue the similar possible optimal solution having optimal value of pulse current 10 A, pulse on time 1010 µs, percentage of reinforcement as 2% and flushing pressure as 0.6 MPa.

2022 ◽  
Vol 11 (2) ◽  
pp. 193-202
Author(s):  
G. Venkata Ajay Kumar ◽  
A. Ramaa ◽  
M. Shilpa

In most of the machining processes, the complexity arises in the selection of the right process parameters, which influence the machining process and output responses such as machinability and surface roughness. In such situations, it is important to estimate the inter-relationships among the output responses. One such method, Decision-Making Trial and Evaluation Laboratory (DEMATEL) is applied to study the inter-relationships of the output responses. Estimation of proper weights is also crucial where the output responses are conflicting in nature. In the current study, DEMATEL technique is used for estimating the inter-relationships for output responses in machining of EN 24 alloy under dry conditions. CRiteria Importance Through Inter-criteria Correlation (CRITIC) method is used to estimate the weights and finally the optimal selection of machining parameters is carried out using Techniques for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. The model developed guides the decision maker in selection of precise weights, estimation of the inter relationships among the responses and selection of optimal process parameters.


2009 ◽  
pp. 147-154 ◽  
Author(s):  
Dusan Skakic ◽  
Igor Dzincic

Both the scientific experience and the engineering practice indicate that the decision making processes in the course of solving complex designing problems require an analysis of a great number of different construction variants. These types of decision-making processes are time consuming and do not always result in the selection of an optimal solution. That is why the methods of numerical optimization are applied in a wide range of technical sciences to assist in the selection of the best solution. The first step in solving the problem by using the Finite element method is to determine the type of chair earmarked for modeling, and to determine the dimensions of the chair elements.


2013 ◽  
Vol 330 ◽  
pp. 86-90
Author(s):  
Amritpal Singh Sadioura ◽  
Rupinder Singh ◽  
Harwinder Singh

The selection of carbide insert on the basis of performance measuring parameters is amulti-attribute decision making problem. This proposed work demonstrates a methodology to evaluate the machinability of the selected turning operation by using graph theory and matrix methods. The qualitative values of attributes are obtained by measuring the process attributes. The fuzzy score has been used to convert intangible factors to crisp scores and then graph theoretic approach has been applied to calculate the single numerical machinability index for ranking among the insert alternatives. Permanent function matrix has been solved by using computer software. This study, in particular, shows the potentiality of graph theory and matrix approach for the analysis, evaluation and selection of carbide insert for machining process. A hybrid decision making method of graph theory and matrix approach (GTMA) and analytical hierarchy process (AHP) is proposed to solve multi decision making problem. The result of study highlights the ranking of inserts based upon machinability index.


2014 ◽  
Vol 984-985 ◽  
pp. 227-232
Author(s):  
Veluswamy Muthuraman ◽  
Raju Ramakrishnan ◽  
Ponnusamy Sengottuvel ◽  
C. Karthikeyan

Wire Electrical discharge Machining plays an important role in the field of hard, difficult to machine materials like metal matrix composites. Machining process must keep pace with material development. For electrically conductive materials wire electro discharge machining is a viable option due to high accuracy, precision, and ability to achieve complex, intricate shaped profiles on even thin works. Due to thermo-electric nature it is a stochastic process in nature. To simplify the difficulty in determining parameters for the improvement of cutting performance and optimization, analysis of variance and regression analysis were made use of. Tungsten carbide cobalt metal matrix composites finds increasing applications in conventional application like tools and dies as well as in developing fields like bio-medical instruments and aero-space industries. In this present work, the problem of parameter selection, optimization for wire electro discharge machining on tungsten carbide-15% cobalt metal matrix composites, a less worked composition has been undertaken. Sodick AQ-427L wire-edm machine was used with a 0.25 diameter zinc coated brass wire electrode, to cut the material. Each experiment done under different cutting conditions of inputs like pulse on time, pulse off time, wire speed and peak current and repeated for three observations and the average was selected. Optimum machining parameter combination for material removal rate was obtained by using the desirability response optimizer function. Analysis of variance, Confirmation experiment was carried and good improvements were obtained.


2016 ◽  
Vol 62 (3) ◽  
pp. 137-148 ◽  
Author(s):  
P. Nowak ◽  
M. Skłodkowski

Abstract The purpose of this paper is to present and analyse the decision-making problem faced by a future house owner - selection of the optimal solution of building thermal insulation in relation to the selected criteria, both related to costs and future benefits. The problem of selecting the best solutions in the construction sector is widely discussed in the science literature. In this paper, the authors decided to solve the raised problem by using the Entropy method.


2015 ◽  
Vol 47 (2) ◽  
pp. 229-235 ◽  
Author(s):  
D. Petkovic ◽  
M. Madic ◽  
G. Radenkovic

Selection of the most suitable non-conventional machining process (NCMP) for a ceramics machining represents a multi-criteria decision making (MCDM) problem. This paper describes the application of relatively novel MCDM methods for selecting the most suitable NCMP for the ceramics machining. By applying WASPAS and COPRAS methods, ten NCMPs (alternatives) were ranked based on the ten criteria. Comparison of obtained ranking performances with other MCDM methods used by previous researchers was carried out in order to demonstrate WASPAS and COPRAS applicability and capability for non-conventional machining process selection.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Sanja Bajić ◽  
Dragoljub Bajić ◽  
Branko Gluščević ◽  
Vesna Ristić Vakanjac

The paper proposes a problem-solving approach in the area of underground mining, related to the evaluation and selection of the optimal mining method, employing fuzzy multiple-criteria optimization. The application of fuzzy logic to decision-making in multiple-criteria optimization is particularly useful in cases where not enough information is available about a given system, and where expert knowledge and experience are an important aspect. With a straightforward objective, multiple-criteria decision-making is used to rank various mining methods relative to a set of criteria and to select the optimal solution. The considered mining methods represent possible alternatives. In addition, various criteria and subcriteria that influence the selection of the best available solution are defined and analyzed. The final decision concerning the selection of the optimal mining method is made based on mathematical optimization calculations. The paper demonstrates the proposed approach as applied in a case study.


Sign in / Sign up

Export Citation Format

Share Document