An efficient GDQ model for vibration analysis of a multiwall carbon nanotube on Pasternak foundation with general boundary conditions

Author(s):  
P Soltani ◽  
P Bahar ◽  
A Farshidianfar

In this article, the free transverse vibrational behaviour of a multiwall carbon nanotube (MWNT) surrounded by a Pasternak-type elastic medium has been determined using a very generalized model. The model has been made on the basis of Timoshenko elastic beam theory which allows the effects of shear deformation and rotary inertia and supports non-coaxial vibration of the adjacent layers of MWNT using interlayer van der Waals forces. The boundary conditions used in this simulation are such that not only standard and conventional kinds, but also all possible forms, of end conditions are applicable. A generalized differential quadrature method is utilized to solve the governing equations with assorted aspect ratios, various boundary conditions, and different foundation stiffnesses. This study shows that the resonant frequencies of MWNTs are strongly dependent on the stiffness of the elastic medium, aspect ratios, and number of walls in carbon nanotubes and, for short nanotubes, the boundary stiffness plays a significant role on the natural frequencies.

2020 ◽  
Vol 20 (12) ◽  
pp. 2050129
Author(s):  
Asha Patel ◽  
Rahul Das ◽  
Shishir Kumar Sahu

The effects of different percentages of multiwall carbon nanotube (MWCNT) on natural frequencies of polymer composite plates of varying edge-to-thickness ratio, aspect ratio and boundary conditions at ambient temperature are investigated experimentally and numerically. Conventional hand lay-up technique is used to prepare the MWCNT polymer composite plates with different percentages of carbon nanotubes (CNTs) mixed to the polymer. The elastic properties are determined experimentally by conducting uniaxial tensile test in the universal testing machine INSTRON 8862 as per ASTM D-3039. A set of experiments were conducted for the natural frequencies of vibration of MWCNT composite plates using the Bruel and Kjaer Fast Fourier Transform (FFT) analyzer with pulse platform. Detailed parametric studies are carried out to determine the effect of weight fraction of CNTs, aspect ratios, edge-to-thickness ratios and boundary conditions on the natural frequency of composite plates. Numerical solutions were obtained by the commercial finite element method (FEM) package ABAQUS. A simulation model is developed using the same geometrical and material properties determined experimentally from which the frequency responses are obtained. The simulation results are found to be consistent with the experimental ones. The results obtained showed an increase in elastic properties and natural frequencies up to 0.3 wt.% of MWCNT and decrease thereafter for all cases due to agglomeration of CNT in the polymer matrix. The morphology and dispersion of the CNTs in composites at micro level are investigated by using scanning electron microscopy (SEM) to further corroborate the behavior of specimens.


2016 ◽  
Vol 16 (10) ◽  
pp. 1550068 ◽  
Author(s):  
Chih-Ping Wu ◽  
Jyun-Yu Liou

On the basis of Reissner’s mixed variational theorem (RMVT), a nonlocal Timoshenko beam theory (TBT) is developed for the stability analysis of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium, with various boundary conditions and under axial loads. Eringen’s nonlocal elasticity theory is used to account for the small length scale effect. The strong formulations of the RMVT-based nonlocal TBT and its associated possible boundary conditions are presented. The interaction between the SWCNT and its surrounding elastic medium is simulated using the Pasternak foundation models. The critical load parameters of the embedded SWCNT with different boundary conditions are obtained by using the differential quadrature (DQ) method, in which the locations of [Formula: see text] sampling nodes are selected as the roots of [Formula: see text]-order Chebyshev polynomials. The results of the RMVT-based nonlocal TBT are compared with those obtained using the principle of virtual displacement (PVD)-based nonlocal TBT available in the literature. The influences of some crucial effects on the critical load parameters of the embedded SWCNT are examined, such as different boundary conditions, Winkler stiffness and shear modulus of the foundation, aspect ratios, and the nonlocal parameter.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 214-228 ◽  
Author(s):  
Armagan Karamanli ◽  
Metin Aydogdu

In this paper, the free vibration and buckling responses of laminated composite and sandwich microbeams with arbitrary boundary conditions are investigated. The governing equations based on the modified couple stress theory are derived by using the total potential energy of a microbeam and employing a transverse shear-normal deformable beam theory. Extensive analysis results in terms of dimensionless fundamental frequencies and dimensionless critical buckling loads are introduced for various boundary conditions, aspect ratios, orthotropy ratios, fiber orientation angles, thickness to material length scale parameter ratios, and core thickness to face layer thickness ratios.


Author(s):  
M. Rasekh ◽  
S. E. Khadem

In this paper, for the first time, the influence of internal moving fluid on the nonlinear vibration and stability of embedded carbon nanotube is investigated. The Euler-Bernoulli beam theory is employed to model the vibrational behavior of an embedded carbon nanotube. The relationship of nonlinear amplitude and frequency for the single-wall nanotubes in the presence of internal fluid flow is expressed using the multiple scales perturbation method. The amplitude-frequency response curves of the nonlinear vibration obtained and the effects of the surrounding elastic medium, mass and the aspect ratios of nanotubes are discussed. It is shown that beyond the critical flow velocity buckling occurs and surrounding elastic medium plays a significant role in the stability of the carbon nanotube.


2021 ◽  
Author(s):  
Biswajit Mahanty ◽  
Sujoy Kumar Ghosh ◽  
Kuntal Maity ◽  
KRITTISH ROY ◽  
Subrata Sarkar ◽  
...  

In this work, an all-fiber pyro- and piezo-electric nanogenerator (PPNG) is designed by multiwall carbon nanotube (MWCNT) doped poly(vinylidene fluoride) (PVDF) electrospun nanofibers as the active layer and interlocked conducting...


2005 ◽  
Vol 65 (11-12) ◽  
pp. 1703-1710 ◽  
Author(s):  
Hsu-Chiang Kuan ◽  
Chen-Chi M. Ma ◽  
Wei-Ping Chang ◽  
Siu-Ming Yuen ◽  
Hsin-Ho Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document