Dynamic analysis of piston secondary motion in an internal combustion engine under non-lubricated and fully flooded lubricated conditions

Author(s):  
P D McFadden ◽  
S R Turnbull

A dynamic model is presented for the internal combustion engine in which the primary motion of the pistons is determined by the gas pressure in the cylinders rather than by an assumed steady rotation of the crank, and the secondary motion of the pistons is determined by the interaction of the pistons with the cylinder walls under non-lubricated and fully flooded lubricated conditions. Results are presented for the simulation of a single-cylinder engine and show clearly the variations in the secondary translation and rotation of the piston throughout the engine cycle for the non-lubricated condition, and the significant damping of such secondary motions in the fully flooded lubricated condition.

2017 ◽  
Vol 88 (12) ◽  
pp. 125004 ◽  
Author(s):  
Felix C. P. Leach ◽  
Martin H. Davy ◽  
Dmitrij Siskin ◽  
Ralf Pechstedt ◽  
David Richardson

Author(s):  
Steven M. Nesbit

Abstract A four cylinder internal combustion engine was developed which utilizes a cross-slider as its internal mechanism. The mechanism consists of two perpendicular sliders, each connected at midpoint to a floating gear which mates to two grounded gears pinned off center. A complete kinematic and dynamic analysis was performed to study mechanism behavior in an engine application. As a result of the analysis, the kinematics and dynamics of the mechanism were defined, the engine performance was simulated, the components of the engine were properly sized, and a total force and torque balance was achieved. This article will present the development of the kinematic and dynamic expressions that describe the cross-slider mechanism as used in an internal combustion engine.


2013 ◽  
Vol 871 ◽  
pp. 32-38
Author(s):  
Mazouzi Redha ◽  
Kellaci Ahmed ◽  
Karas Abdelkader ◽  
Khelidj Benyoucef

The piston secondary motion significantly influences the tribologicalcharacteristics in an internal combustion engine, such as the piston slapphenomenon and the frictional power loss.An analytical treatment was conducted to investigate piston motion and a computer program was written to predict optimum designs for high mechanical efficiency. This paper focuses on an analysis of the piston dynamic response. By coupling FDM for thehydrodynamic pressure field with the FEM for the piston deformation, wenumerically approximate the lubricantstructure interaction in an internalcombustion engine.


Author(s):  
P D McFadden ◽  
S R Turnbull

An existing model for the dynamic analysis of the piston motion in an internal combustion engine has been modified to incorporate a simpler representation of the piston–cylinder interaction, and to represent the main and big-end bearings as lubricated rather than dry journal bearings. The results demonstrate that the differences in calculated bearing forces and output torques are negligible, indicating that the simple dry journal bearing model is sufficient, but show that the modelling of the interaction between piston and cylinder is considerably improved.


2014 ◽  
Vol 553 ◽  
pp. 582-587
Author(s):  
Bao Cheng Zhang ◽  
Tong Li ◽  
Hai Fei Zhan ◽  
Yuan Tong Gu

A theoretical model is developed for the analysis of piston secondary motion. Based on this model, the slap force of a specific L6 diesel engine was compared when considering different boundary conditions, such as lubricating oil on cylinder liner, surface roughness, deformation of cylinder liner and piston skirt. It is concluded that it is necessary to consider the secondary motion of piston in the analysis of the inner excitation for an internal combustion engine. A more comprehensive consideration of the boundary condition (i.e., more close to the actual condition) will lead to a smaller maximum slap force, and among all boundary conditions considered in this paper, the structural deformation of the piston skirt and cylinder liner is the most influential factor. The theoretical model developed and findings obtained in this study will benefit the future analysis and design of advanced internal combustion engine structures.


Sign in / Sign up

Export Citation Format

Share Document