Development of a PISO-SPH method for computing incompressible flows

Author(s):  
Ali Tayebi ◽  
Behzad Ghadiri Dehkordi

A new algorithm is proposed for solving the time-dependent Navier-Stokes equations in a sequential uncoupled manner. The algorithm, known as PISO (Pressure Implicit with Splitting of Operators) is extended to the Smoothed Particle Hydrodynamics (SPH) context (PISO-SPH). The algorithm consists of one prediction and two correction steps, based on a full Navier-Stokes equation, therefore, a modified Poisson equation is derived which makes the algorithm more stable with less pressure fluctuations. The proposed PISO-SPH method is applied to solve a number of benchmark problems including both unsteady and steady state test cases. Comparing the results with analytical solutions and other numerical methods, it is shown that the proposed method is accurate and straightforward for the simulation of incompressible fluid flows.

2010 ◽  
Vol 32 (1) ◽  
pp. 37-46
Author(s):  
Nguyen Hoai Son ◽  
Nguyen Duy Hung

In this article, we present a numerical method that is Smoothed Particle Hydrodynamic (SPH) method. In the SPH method for the Navier - Stokes equations the most widespread method to solve for pressure and mass conservation is the weakly compressible assumption (WCSPH). This article presents two important benchmark problems to validate the algorithm of SPH method. The two benchmark problems chosen are the Lid - driven cavity problem and Poiseuille flow problem at very low Reynolds numbers. The SPH results are also in good agreement with the analytical solution.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2009 ◽  
Vol 76 (2) ◽  
Author(s):  
Murat Manguoglu ◽  
Ahmed H. Sameh ◽  
Faisal Saied ◽  
Tayfun E. Tezduyar ◽  
Sunil Sathe

In this paper we present effective preconditioning techniques for solving the nonsymmetric systems that arise from the discretization of the Navier–Stokes equations. These linear systems are solved using either Krylov subspace methods or the Richardson scheme. We demonstrate the effectiveness of our techniques in handling time-accurate as well as steady-state solutions. We also compare our solvers with those published previously.


Author(s):  
Carl E. Rathmann

For well over 150 years now, theoreticians and practitioners have been developing and teaching students easily visualized models of fluid behavior that distinguish between the laminar and turbulent fluid regimes. Because of an emphasis on applications, perhaps insufficient attention has been paid to actually understanding the mechanisms by which fluids transition between these regimes. Summarized in this paper is the product of four decades of research into the sources of these mechanisms, at least one of which is a direct consequence of the non-linear terms of the Navier-Stokes equation. A scheme utilizing chaotic dynamic effects that become dominant only for sufficiently high Reynolds numbers is explored. This paper is designed to be of interest to faculty in the engineering, chemistry, physics, biology and mathematics disciplines as well as to practitioners in these and related applications.


2014 ◽  
Author(s):  
P. Bigay ◽  
A. Bardin ◽  
G. Oger ◽  
D. Le Touzé

In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


2010 ◽  
Vol 20 (08) ◽  
pp. 1299-1318 ◽  
Author(s):  
A. BELLOUQUID

This paper deals with the analysis of the asymptotic limit for BGK model to the linearized Navier–Stokes equations when the Knudsen number ε tends to zero. The uniform (in ε) existence of global strong solutions and uniqueness theorems are proved for regular initial fluctuations. As ε tends to zero, the solution of BGK model converges strongly to the solution of the linearized Navier–Stokes systems. The validity of the BGK model is critically analyzed.


1969 ◽  
Vol 37 (4) ◽  
pp. 727-750 ◽  
Author(s):  
Gareth P. Williams

A method of numerically integrating the Navier-Stokes equations for certain three-dimensional incompressible flows is described. The technique is presented through application to the particular problem of describing thermal convection in a rotating annulus. The equations, in cylindrical polar co-ordinate form, are integrated with respect to time by a marching process, together with the solving of a Poisson equation for the pressure. A suitable form of the finite difference equations gives a computationally-stable long-term integration with reasonably faithful representation of the spatial and temporal characteristics of the flow.Trigonometric interpolation techniques provide accurate (discretely exact) solutions to the Poisson equation. By using an auxiliary algorithm for rapid evaluation of trigonometric transforms, the proportion of computation needed to solve the Poisson equation can be reduced to less than 25% of the total time needed to’ advance one time step. Computing on a UNIVAC 1108 machine, the flow can be advanced one time-step in 2 sec for a 14 × 14 × 14 grid upward to 96 sec for a 60 × 34 × 34 grid.As an example of the method, some features of a solution for steady wave flow in annulus convection are presented. The resemblance of this flow to the classical Eady wave is noted.


Sign in / Sign up

Export Citation Format

Share Document