Design and test of vehicle suspension system with inerters

Author(s):  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Dehua Shi ◽  
Xiaoliang Zhang ◽  
Yuexia Chen ◽  
...  

A vehicle suspension system with inerters is proposed and its dynamic model is established to analyse its dynamic performance. The structure of the suspension with inerters is also constructed and its form and structural parameters are optimized. Then the rack-and-pinion inerter and the bench test system of suspension are designed. Based on the simulation, bench test is conducted. It has shown that theoretical research is consistent with the test results. Moreover, the structure of the suspension with inerters is so simple, that it can be easily achieved. Consequently the passenger comfort is greatly enhanced and the comprehensive performance of the car has been coordinated. Therefore, simulated analysis and experimental tests in this paper can provide evidence for further research on suspension with inerters.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987499 ◽  
Author(s):  
Xiaofeng Yang ◽  
Wentao Zhao ◽  
Yanling Liu ◽  
Long Chen ◽  
Xiangpeng Meng

This article concerns a hybrid vehicle suspension system that can regenerate energy from vibrations. To further improve the performance of the hybrid vehicle suspension system, the design of the energy-regenerative circuit is investigated. First, the force tests of the linear motor used in the hybrid vehicle suspension were carried out, and the key parameters of the linear motor were obtained. Then, the selection procedures of the protective resistance, inductance, and initial terminal voltage of the super capacitor were discussed. These aforementioned parameters’ values were determined by considering the impact of the hybrid suspension on the dynamic performance indexes and the energy-regenerative efficiency. Simulations showed that, in comparison to the original hybrid suspension system, the designed hybrid suspension effectively improved the energy-regenerative efficiency, and that the dynamic performance indexes of the suspension were synchronously improved. Given the result of the simulation analysis, which were validated by bench tests, it is shown that the optimized energy-regenerative circuit presents an enhanced regeneration efficiency, with an improvement of nearly 13% compared to the original suspension system.


2016 ◽  
Vol 823 ◽  
pp. 247-252 ◽  
Author(s):  
Ion Preda

The design of a vehicle suspension system starts with very few input parameters. Simple models are used during initial simulations in order to ensure the desired compromise between comfort and dynamic performance qualities, at different vehicle speeds and loads. That stage leads to the setup of the needed suspension parameters on the model, mainly the stiffness of the suspension springs and tires and the damping coefficient.In an algorithmic way, this paper summarizes design recommendations existing in the field of vehicle suspensions. Based on the procedure in this article, a computer program was implemented in the software MDesign.


Author(s):  
Xubin Song ◽  
Dongpu Cao

This research proposes a novel transmissibility shaping control (T-shaping Control) method and explores its potential performance benefits for active vehicle suspension systems with energy-regeneration [1]. The proposed model-free T-shaping control integrates a range of sub-strategies based on the frequency information extracted from measured dynamic signals. Each strategy is designed to function dominantly in a certain frequency range to achieve a desirable (or optimal) transmissibility of vehicle responses for enhanced vehicle dynamic performance and safety. Different sub-strategies employed for different frequency ranges consist of stiffness control, skyhook control, groundhook control, and variable damping. In order to demonstrate the effectiveness of this proposed control method, a novel tunable compressible fluid strut (CFS) integrating with digital displacement pump motor (DDPM) is used to form an energy-regenerative controllable vehicle suspension system [2–4]. Two vehicle models, including quarter-car and full-vehicle models, are employed to investigate the dynamic performance of a road vehicle with the proposed T-shaping control and novel regenerative suspension system. The results demonstrate the effectiveness and considerable performance enhancements of the proposed novel T-shaping control applied to the novel CFS suspension system in a very energy-efficient manner.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012092
Author(s):  
Eyere Emagbetere ◽  
Peter A. Oghenekovwo ◽  
Christabel C. Obinabo ◽  
Abraham K. Aworinde ◽  
Felix A. Ishola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document