Elastoplastic analysis of a thin-walled tube under cyclic bending and constant internal pressure: A simplified model

Author(s):  
Hosein Yazdani ◽  
Ali Nayebi

In this study, the elastoplastic analysis of thin-walled tubes under cyclic bending and internal pressure is presented. A simple method is presented and verified. In order to predict ratcheting or shakedown behavior in the cyclic loading, von-Mises yield criterion as the yield surface and Chaboche’s nonlinear kinematic hardening model are used. The stress–strain variation is obtained with the help of return mapping algorithm. The present solution is in good agreement with experimental results. Shakedown or ratcheting behavior of the tube under various combinations of applied constant internal pressure and cyclic curvature is considered, Bree’s interaction diagram is obtained and the boundary between shakedown and ratcheting zone is determined.

2013 ◽  
Vol 05 (04) ◽  
pp. 1350038 ◽  
Author(s):  
H. YAZDANI ◽  
A. NAYEBI

Ratcheting and fatigue damage of thin-walled tube under cyclic bending and steady internal pressure is studied. Chaboche's nonlinear kinematic hardening model extended by considering the effect of continuum damage mechanics employed to predict ratcheting. Lemaitre damage model [Lemaitre, J. and Desmorat, R. [2005] Engineering Damage Mechanics (Springer-Verlag, Berlin)] which is appropriate for low cyclic loading is used. Also the evolution features of whole-life ratcheting behavior and low cycle fatigue (LCF) damage of the tube are discussed. A simplified method related to the thin-walled tube under bending and internal pressure is used and compared well with experimental results. Bree's interaction diagram with boundaries between shakedown and ratcheting zone is determined. Whole-life ratcheting of thin-walled tube reduces obviously with increase of internal pressure.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


1999 ◽  
Vol 121 (4) ◽  
pp. 237-241 ◽  
Author(s):  
M. Mohareb ◽  
D. W. Murray

An analytical expression is derived for the prediction of fully plastic moment capacity of pipes subjected to axial loading and internal pressure. The expression is based on the von Mises yield criterion. The expression predicts pipe moment capacities that are in good agreement with full-scale experimental results. A universal nondimensional moment versus effective axial force-pressure interaction diagram is developed for the design of elevated pipe lines.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load for a long radius 90-degree pipe bend was previously developed [1, 2]. The simplified technique utilizes the finite element method and employs the small displacement formulation to determine the shakedown limit load (moment) without performing lengthy time consuming full cyclic loading finite element simulations or utilizing conventional iterative elastic techniques. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure. In the current paper, a parametric study is conducted through applying the simplified technique on three scheduled pipe bends namely: NPS (Nominal Pipe Size) 10" Sch. No. 20, NPS 10" Sch. No. 40 STD, and NPS 10" Sch. No. 80. Two material models are assigned namely; an elastic-perfectly-plastic (EPP) material and an idealized elastic-linear strain hardening material obeying Ziegler’s linear kinematic hardening (KH) rule. This type of material model is termed in the current study as the KH-material. The pipe bends are subjected to a spectrum of constant internal pressure magnitudes and cyclic bending moments. The cyclic bending includes three different loading patterns namely: in-plane closing (IPC), in-plane opening (IPO), and out-of-plane (OP) bending moment loadings of the pipe bends. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the scheduled pipe bends for the spectrum of constant internal pressure magnitudes. A comparison between the generated shakedown diagrams for the pipe bends employing the EPP- and the KH-materials is presented. Relatively higher shakedown limit moments were recorded for the pipe bends employing the KH-material at the medium to high internal pressure magnitudes.


2019 ◽  
Vol 9 (23) ◽  
pp. 5025
Author(s):  
Yang ◽  
Dai ◽  
He

The ratcheting behavior of a steel pipe with assembly parts was examined under internal pressure and a cyclic bending load, which has not been seen in previous research. An experimentally validated and three dimensional (3D) elastic-plastic finite element model (FEM)—with a nonlinear isotropic/kinematic hardening model—was used for the pipe’s ratcheting simulation and considered the assembly contact effects outlined in this paper. A comparison of the ratcheting response of pipes with and without assembly parts showed that assembly contact between the sleeve and pipe suppressed the ratcheting response by changing its trend. In this work, the assembly contact effect on the ratcheting response of the pipe with assembly parts is discussed. Both the assembly contact and bending moment were found to control the ratcheting response, and the valley and peak values of the hoop ratcheting strain were the transition points of the two control modes. Finally, while the clearance between the sleeve and the pipe had an effect on the ratcheting response when it was not large, it had no effect when it reached a certain value.


2020 ◽  
Vol 10 (8) ◽  
pp. 2936 ◽  
Author(s):  
Aref Mehditabar ◽  
Saeid Ansari Sadrabadi ◽  
Raffaele Sepe ◽  
Enrico Armentani ◽  
Jason Walker ◽  
...  

The present research is concerned with the elastic–plastic responses of functionally graded material (FGM) pipe, undergoing two types of loading conditions. For the first case, the FGM is subjected to sustained internal pressure combined with a cyclic bending moment whereas, in the second case, sustained internal pressure is applied simultaneously with a cyclic through-thickness temperature gradient. The properties of the studied FGM are considered to be variable through shell thickness according to a power-law function. Two different designs of the FGM pipe are adopted in the present research, where the inner surface in one case and the outer surface in the other are made from pure 1026 carbon steel. The constitutive relations are developed based on the Chaboche nonlinear kinematic hardening model, classical normality rule and von Mises yield function. The backward Euler alongside the return mapping algorithm (RMA) is employed to perform the numerical simulation. The results of the proposed integration procedure were implemented in ABAQUS using a UMAT user subroutine and validated by a comparison between experiments and finite element (FE) simulation. Various cyclic responses of the two prescribed models of FGM pipe for the two considered loading conditions are classified and brought together in one diagram known as Bree’s diagram.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
R. Karimi ◽  
M. Shariati

Abstract This paper investigates ratcheting behavior of SS316 L thin-walled steel pipes subjected to cyclic internal pressure experimentally and numerically. Numerical simulations were performed using abaqus software, and nonlinear isotropic/kinematic hardening model. According to experimentations, it was found that the ratcheting strain is only significant in the hoop direction of a pipe subjected to cyclic internal pressure. The effects of pressure amplitude and mean pressure on ratcheting behavior of thin walled pipe in hoop direction were studied experimentally and numerically, and it was observed that increasing the pressure amplitude and mean pressure increased the percentage of ratcheting strain. Another important point about the results was the dominance of pressure amplitude on mean pressure. The results showed that at higher mean pressures the effect of pressure amplitude on increasing the percentage of ratcheting strain was greater. Finally, the experimental and numerical results were in good agreement.


1993 ◽  
Vol 28 (4) ◽  
pp. 277-282 ◽  
Author(s):  
D N Moreton

A thin-walled cylinder subjected to a continuous internal pressure and an alternating axial deformation is shown to exhibit ratchetting. This ratchetting manifests itself as a growth in the diameter of the cylinder and a reduction in its wall thickness. For an elastic-perfectly-plastic material the ratchetting rates are established and the boundaries of ratchetting behaviour determined. These ratchetting rates are compared with the results from a simple experiment and other available data. It is noted that the analysis is very sensitive to the yield criterion adopted.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1166
Author(s):  
Stanislav Strashnov ◽  
Sergei Alexandrov ◽  
Lihui Lang

The present paper provides a semianalytic solution for finite plane strain bending under tension of an incompressible elastic/plastic sheet using a material model that combines isotropic and kinematic hardening. A numerical treatment is only necessary to solve transcendental equations and evaluate ordinary integrals. An arbitrary function of the equivalent plastic strain controls isotropic hardening, and Prager’s law describes kinematic hardening. In general, the sheet consists of one elastic and two plastic regions. The solution is valid if the size of each plastic region increases. Parameters involved in the constitutive equations determine which of the plastic regions reaches its maximum size. The thickness of the elastic region is quite narrow when the present solution breaks down. Elastic unloading is also considered. A numerical example illustrates the general solution assuming that the tensile force is given, including pure bending as a particular case. This numerical solution demonstrates a significant effect of the parameter involved in Prager’s law on the bending moment and the distribution of stresses at loading, but a small effect on the distribution of residual stresses after unloading. This parameter also affects the range of validity of the solution that predicts purely elastic unloading.


Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


Sign in / Sign up

Export Citation Format

Share Document