Elastic-plastic analysis for wet multidisc brake during repeated braking

Author(s):  
Zhanling Ji ◽  
Yunhua Li ◽  
Rui Xi ◽  
Juntao Jia

To reveal the mechanism and evolution laws of the braking performance declining from heat load in the repeated braking applied for wet multidisc brake, a finite element analysis was carried out by using the bidirectional thermal-structure coupling method. Based on the fundamental principles of the energy conservation and virtual work principle, the elemental equations between temperature and heat load, and deformation displacement and load with heat transferring boundary conditions and heat–structure interaction were derived. Taking a steel disk in the brake for example, the deformation state of its elements, and the starting time, the location, the severity, and evolution laws of the plastic deformation were analyzed and demonstrated by using dimensionless stress distribution contours. The area in contact along the interface and the ratio of the element numbers to produce plastic deformation to the total element numbers on the steel disk were described by contact ratio and plasticity ratio, respectively. Moreover, the results under the repeated braking case were compared with that under the lasting braking case, which indicates that the influence of the temperature load on the performance declining of the repeated braking case is much lower than one of the lasting braking case, and the temperature is lower than 40 K and the plasticity ratio is smaller than 0.35 after the braking time is longer than 350 s. The conducted finite element analyses provided the theoretical fundamentals for the design and the application of the brake in the heavy type of trucks.

2015 ◽  
Vol 19 (6) ◽  
pp. 2205-2217 ◽  
Author(s):  
Zhanling Ji ◽  
Yunhua Li ◽  
Sujun Dong ◽  
Peng Zhang ◽  
Yunze Li

Addressed to serious heat degradation problem of the braking continuously performed in the drag brake application for a long time, finite element analysis for bidirectional thermal-structure coupling is adopted to investigate temperature and stress when material properties are temperature-dependent. Based on the constitutive relations of heat transfer and strain-stress, three-dimensional transient finite element equilibrium equations with many kinds of boundary conditions for bidirectional thermal-structure coupling were derived. And it was originally presented that start time, location, severity and evolution laws of plastic deformation were depicted using dimensionless stress distribution contour with the yield limit related to temperature. The change laws of plastic element number and contact area versus braking time were expressed by plasticity ratio and contact ratio curves, respectively. The laws revealed by the numerical calculation results are in accordance with the objective perception and reasoning.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987456 ◽  
Author(s):  
Dyi-Cheng Chen ◽  
Li Cheng-Yu ◽  
Yu-Yu Lai

With the advancement of technology, aiming for achieving a greater lightness and smaller size of 3C products, parts processing technology not only needs to explore the basic scientific theory of materials but also needs to discuss the process of deep drawing numerical and the plastic deformation. This study is based on the square shape of the deep drawing numerical simulation, and aluminum alloy plastic flow stress was input into the finite element method for simulation of plastic deformation in the aluminum alloy friction, mold clamping force, and frequency, as well as amplitude in the influence of forming mechanism and the drawing ratio of aluminum alloy. Finite element analysis software has the function of grid automatic rebuild, which can rebuild the broken grid in the analysis into a complete grid shape, which can avoid the divergence caused by numerical calculation in the analysis process. The greater the obtained error value, the best plastic parameters can be found.


2016 ◽  
Vol 1818 ◽  
Author(s):  
M. A. González-Lozano ◽  
P. Ponce-Peña ◽  
M.A. Escobedo-Bretado ◽  
R.H. Lara-Castro ◽  
B. X. Ochoa-Salazar

ABSTRACTUsing Finite Element Method (FEM) simulations is possible to study the homogeneity of deformation in the Equal Channel Angular Pressing (ECAP) process. In this work an investigation about the influence of a modified die on strain distribution in an ecaped Al6060 alloy was carried out. Due to that, tensile stress occurs in the vicinity of upper surface of the specimen in the severe plastic deformation zone, which increases the cracking and fracture tendency of the specimen and impedes further ECAP processing, the conventional ECAP die was modified to eliminate the tensile stress and enhance the compressive stress in the severe plastic deformation zone and reducing the cracking and fracture tendency of the specimen. Finite element analysis demonstrated that the stress state changes from tensile to strongly compressive when using the modified die. The aim of this study is to evaluate the advantages/disadvantages of the modified ECAP die and processing conditions.


2000 ◽  
Vol 2000.1 (0) ◽  
pp. 187-188
Author(s):  
Masaki OMIYA ◽  
Keisuke SUZUKI ◽  
Hirotsugu INOUE ◽  
Kikuo KISHIMOTO ◽  
Toshikazu SHIBUYA

Sign in / Sign up

Export Citation Format

Share Document