Investigation on feed direction cutting force in ultrasonic vibration-assisted grinding of dental ceramics

Author(s):  
Heng Meng ◽  
Kan Zheng ◽  
Xingzhi Xiao ◽  
Wenhe Liao

The feasibility of ultrasonic vibration-assisted grinding in dental restoration has been preliminarily proved. Improving the machining quality of zirconia ceramics by controlling cutting force is the focus of the researchers. However, the existing feed direction cutting force model for ultrasonic vibration-assisted grinding does not take the ultrasonic vibration amplitude and frequency into account. This paper presents a mathematical model for feed direction cutting force in ultrasonic vibration-assisted grinding of zirconia under the consideration of amplitude and frequency, and assuming that brittle fracture is the primary mechanism of material removal in ultrasonic vibration-assisted grinding of zirconia. The effects of amplitude and frequency on the motion, effective cutting distance, and theoretical removal of an abrasive particle have been analyzed. Besides, the number of active abrasive particles is calculated with analyzing the influences of lateral cracks and ultrasonic vibration. The variation laws of cutting force and penetration depth of an abrasive particle during ultrasonic vibration-assisted grinding have also been analyzed. Therefore, the relationship between feed direction cutting force and input variables is predicted through the developed model. Finally, pilot experiments are conducted for the mathematical model verification. Experimental results show that the trends of input variables for feed direction cutting force agree well with the trends of the developed cutting force model. Hence, the mathematical model can be applied to evaluate the feed direction cutting force in ultrasonic vibration-assisted grinding of zirconia ceramics.

Author(s):  
Na Qin ◽  
Z. J. Pei ◽  
D. M. Guo

Titanium and its alloys (Ti) have wide applications in industry. However, since Ti is notorious for its poor machinability, their applications have been hindered by the high cost and low efficiency. Ultrasonic-vibration-assisted grinding (UVAG) is a hybrid machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining, and it is a cost-effective machining process for Ti. The relations between cutting force and input variables have been investigated and reported. But these relations have been studied by changing one variable at time. Therefore, the interactions between cutting force and input variables have not been revealed. In this paper, a two-level five-factor full factorial design is used to study the relations between cutting force and input variables based on a cutting force model for UVAG of Ti. The main effects of these variables, and two-factor interactions and three-factor interactions of these variables are also revealed.


Author(s):  
Na Qin ◽  
Z. J. Pei ◽  
C. Treadwell ◽  
D. M. Guo

Ultrasonic-vibration-assisted grinding (UVAG) or rotary ultrasonic machining has been investigated both experimentally and theoretically. Effects of input variables on output variables in UVAG of brittle materials and titanium (Ti) have been studied experimentally. Models to predict the material removal rate in UVAG of brittle materials have been developed. However, there is no report on models of cutting force in UVAG. This paper presents a physics-based predictive model of cutting force in the UVAG of Ti. Using the model developed, influences of input variables on cutting force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful template and foundation for development of cutting force models in UVAG of other materials (such as ceramics and stainless steels) and models to predict torque, cutting temperature, tool wear, and surface roughness in UVAG.


Author(s):  
Na Qin ◽  
Z. J. Pei ◽  
W. L. Cong ◽  
C. Treadwell ◽  
D. M. Guo

A mechanistic model for cutting force in ultrasonic-vibration-assisted grinding (UVAG) (also called rotary ultrasonic machining) of brittle materials is proposed for the first time. Fundamental assumptions include: (1) brittle fracture is the dominant mechanism of material removal, and (2) the removed volume by each diamond grain in one vibration cycle can be related to its indentation volume in the workpiece through a mechanistic parameter. Experiments with UVAG of silicon are conducted to determine the mechanistic parameter for silicon. With the developed model, influences of six input variables on cutting force are predicted. These predicted influences trends are also compared with those determined experimentally for several brittle materials.


2014 ◽  
Vol 1017 ◽  
pp. 800-805 ◽  
Author(s):  
Song Dong ◽  
Kan Zheng ◽  
Xing Zhi Xiao

Dental zirconia ceramics have been widely used in dental restorations due to their superior aesthetical and mechanical properties. Ultrasonic vibration assisted grinding (UVAG), as a novel effective machining process for hard and brittle materials, is introduced into directly machining sintered dental zirconia ceramics. This study is dedicated to investigating the influence of input variables (spindle speed, feedrate and cutting depth) on surface roughness during UVAG of sintered dental zirconia ceramics. The experiment is conducted through single-factor method, and the experimental results are statistically analyzed by One-Way ANOVA. Besides, the influence tendency of input variables on surface roughness is also obtained. The results indicate that the influence of spindle speed on surface roughness is highly significant. The value of surface roughness rises with the increase of spindle speed, feedrate, and cutting depth. Therefore, a better surface quality will be achieved with the combination of lower spindle speed, cutting depth and feedrate.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


2016 ◽  
Vol 693 ◽  
pp. 837-842
Author(s):  
Fu Yi Xia ◽  
Li Ming Xu ◽  
De Jin Hu

A novel principle of cup wheel grinding of rotating concave quadric surface was proposed. The mathematical model of machining process was established to prove the feasibility of precision grinding of rotating concave paraboloid based on the introduced principle. The conditions of non-interference grinding of concave paraboloid were mathematically derived. The processing range and its influence factors were discussed. The trajectory equation of abrasive particle was concluded. Finally, the math expressions of numerical controlled parameters was put forward in the process of grinding of the concave paraboloid.


Author(s):  
Michael F. Zaeh ◽  
Florian Schwarz

A consideration of the dynamic interaction between the machine tool structure and the cutting process is required for the prediction and optimization of machining tasks through simulation. This paper outlines a modular, analytical cutting force model applicable to common turning processes. It takes into account the dynamic material behavior and nonlinear friction ratios on the rake face as well as heat transfer phenomena in the deformation zones. In order to overcome simplifying assumptions in analytical cutting force descriptions and to incorporate the chip formation process into the analysis, specific input variables are determined in a metal cutting simulation based on the Finite Element Method (FEM). On the machine tool structure side, the setup of a parametric FEM model is presented. The accuracy of both the machine tool and cutting force models was verified experimentally on a turning center.


Sign in / Sign up

Export Citation Format

Share Document