ultrasonic vibration assisted grinding
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 142 ◽  
pp. 106470
Author(s):  
Yue Chen ◽  
Zhongwei Hu ◽  
Yiqing Yu ◽  
Zhiyuan Lai ◽  
Jiegang Zhu ◽  
...  

2021 ◽  
Author(s):  
Yutong Qiu ◽  
Biao Zhao ◽  
Yang Cao ◽  
Wenfeng Ding ◽  
Yucan Fu ◽  
...  

Abstract Composite manufacturing with multiple energy fields is an important source of processing technology innovation. In this work, comparative experiments on the conventional grinding (CG) and ultrasonic vibration-assisted grinding (UVAG) of hardened GCr15 steel were conducted with WA wheel. The grinding wheel wear patterns and chips were characterized. In addition, grinding force, force ratio, and ground surface quality were investigated to evaluate wheel performance. Results illustrate that the interaction between abrasive grains and workpiece in UVAG process has the characteristics of high frequency and discontinuity. The wear property of abrasive grains is changed and the grinding force is decreased because the generation of micro-fracture in abrasive grains improves the grinding wheel self-sharpening. Better surface quality is obtained, the surface roughness is reduced by up to 18.96%, and the number of defects on the machined surface is reduced through the superior reciprocating ironing of UVAG. Accordingly, WA wheel performance is improved by UVAG.


2021 ◽  
Vol 324 ◽  
pp. 52-57
Author(s):  
Guang Jun Chen ◽  
Jin Kai Xu ◽  
Jia Qi Wang ◽  
Jing Dong Wang ◽  
Le Tong ◽  
...  

Cemented carbide has huge applications in industrial production, but its high mechanical properties also increase the difficulty of processing. In this work, ultrasonic vibration-assisted grinding technology is used for the precision manufacturing of cemented carbide. The influence of the dynamic trajectory of the grains on the material removal process is analyzed. The morphology and roughness of the processed surface are measured and studied. It was observed that in the conventional grinding, the blade pattern is obvious with some defects on the surface. While in the ultrasonic vibration-assisted grinding, the material surface is mainly distributed with pits and small protrusions, and there is no obvious blade pattern. According to the roughness test, the roughness of ultrasonic vibration-assisted grinding is better than that of conventional grinding, and the increase in amplitude has a significant effect on the improvement of roughness. When the amplitude increases from 3μm to 9μm, the surface roughness is improved about 38.1%. The research of ultrasonic vibration-assisted grinding should be of great importance for promote the high-efficiency and high-quality processing and special applications of cemented carbide.


2021 ◽  
Vol 11 (16) ◽  
pp. 7553
Author(s):  
Peiyi Zhao ◽  
Lei Zhang ◽  
Xianli Liu

Subsurface cracks in ultrasonic-vibration-assisted grinding (UVAG) of optical glasses often exhibit diverse forms and proportions. Due to the variety of loads involved in crack formation and propagation, the crack forms and propagation depths have different sensitivities to each process parameter. Predicting the maximum subsurface cracks depth (MSSCD) by considering the varying effects of process parameters plays a key role in implementing effective control of the UVAG process. In this work, the subsurface crack forms and their proportions are investigated by conducting 40 sets of UVAG experiments. The varying effects of the grinding and ultrasonic parameters on the crack form proportions are unveiled by using grey relational analysis. The weighted least square support vector machine (WLS-SVM) prediction model for the MSSCD was developed. Twelve sets of UVAG experiments were carried out to validate the proposed model. The results show that arc-shaped cracks and bifurcated cracks account for 72.5% of all cracks, while ultrasonic vibration amplitude influences most of the proportions of arc-shaped and bifurcated cracks. Compared to other widely used prediction methods, the maximum and average relative prediction errors of the proposed model are 10.54% and 5.59%, respectively, which proves the high prediction accuracy of the model.


Author(s):  
Yutong Qiu ◽  
Jingfei Yin ◽  
Yang Cao ◽  
Wenfeng Ding

Tangential ultrasonic vibration-assisted grinding (TUAG) has a wide prospect in machining difficult-to-machine materials. However, the surface generation mechanism in TUAG is not fully recovered. This study proposes an analytical model of the surface topography produced by TUAG. Based on the model, the surface topography and roughness are predicted and experimentally verified. In addition, the influence of the grinding parameters on the surface topography is analyzed. The predicted surface topography well coincides with experimental measurements, and the prediction error in surface roughness Ra by the proposed model is less than 5%. Compared with conventional grinding, TUAG produces a surface with more uniform scratches and surface roughness Ra was reduced by up to 27% with the proper parameters. However, the improvement of surface roughness in TUAG is weakened when grinding speed or depth of cut increases. Moreover, the influence of the ultrasonic vibration amplitude on the surface roughness is not monotonous. With the grinding parameters selected in this study, TUAG with an ultrasonic amplitude of 7.5 μm produces the minimum surface roughness.


2021 ◽  
Author(s):  
Wenbo Bie ◽  
Bo Zhao ◽  
Chongyang Zhao ◽  
Long Yin ◽  
Xingchen Guo

Abstract Gear plays an important role in transmitting motion and power system, and a new promising process should be utilized to enhance the machining accuracy and performance. In this paper, the ultrasonic vibration was superimposed into the gear to carry out the tangential ultrasonic vibration-assisted grinding gear (TUVAGG). The longitudinal resonant vibration system was designed based on the non-resonant theory. Firstly, the gear was simplified into a disc with the diameter of the reference circle, and the dynamic equation of each part was erected respectively. Then the frequency equation was derived according to the coupling conditions of the force and displacement during the combined surface of the vibration system. Simultaneously, the characteristic of displacement for the vibration system was also obtained. Secondly, the vibration system composed of the simplified disc and the gear was simulated by the finite elements analysis method, and verified by the resonant measurement experiment respectively. The measurement results exhibited a good agreement with the theoretical. Finally, the effectiveness of the vibration system was verified through the ultrasonic vibration-assisted grinding gear test. It was found that compared with the conventional grinding gear (CGG), the normal grinding force and tangential grinding force was reduced by 7.4-28.2% and 8.9-18.9% respectively during TUVAGG. Besides, the grinding temperature and the surface roughness was declined by 7.6-25.7% and 8.6-21.8% respectively, and the residual compressive stress of tooth surface was elevated by 13.2-29.3%. It was concluded that the non-resonant theory was suitable for the designation of longitudinal vibration system for TUVAGG, and also provided a novel process technology for gear machining.


Sign in / Sign up

Export Citation Format

Share Document