Inertia flows of Bingham fluids through a planar channel: Hydroelastic instability analysis

Author(s):  
Shapour Jafargholinejad ◽  
Mohammad Najafi

In this paper, the effect of inertial terms on hydroelastic stability of a pressure-driven flow of a viscoplastic fluid flowing through a channel lined with a highly compliant polymeric gel is investigated. It is assumed that the fluid obeys the Bingham constuitive equation and the polymeric gel follows a two-constant Mooney–Rivlin material, which is used for modeling a nonviscous hyperelastic polymeric coating. A base-state solution is obtained for the fluid motion and solid deformation, simultaneously. Next, some infinitesimally small two-dimensional disturbances are imposed on the base-state solution. Dropping out all nonlinear perturbation terms, the modal linear stability analysis of the channel flow is conducted. The effects of the Bingham number and material constants are then examined on the critical Reynolds number. It is found that the yield stress has a stabilizing effect while the Mooney–Rivlin parameters have destabilizing effects on the pressure-driven flow of Bingham fluids.

2016 ◽  
Vol 18 (3) ◽  
pp. 1886-1896 ◽  
Author(s):  
Bo Liu ◽  
Renbing Wu ◽  
Julia A. Baimova ◽  
Hong Wu ◽  
Adrian Wing-Keung Law ◽  
...  

Water molecules form layered structures inside graphene bilayers and ultra-high pressure-driven flow rates can be observed.


2013 ◽  
Vol 57 (4) ◽  
pp. 1121-1146 ◽  
Author(s):  
L. Rodríguez-Arco ◽  
P. Kuzhir ◽  
M. T. López-López ◽  
G. Bossis ◽  
J. D. G. Durán

2003 ◽  
Vol 13 (3) ◽  
pp. 412-418 ◽  
Author(s):  
Matthew A Holden ◽  
Saurabh Kumar ◽  
Ali Beskok ◽  
Paul S Cremer

Sign in / Sign up

Export Citation Format

Share Document