Effect of temperature on properties of aluminum/single-walled carbon nanotube nanocomposite by molecular dynamics simulation

Author(s):  
Mohsen Motamedi ◽  
AH Naghdi ◽  
SK Jalali

Composite materials have become popular because of high mechanical properties and lightweight. Aluminum/carbon nanotube is one of the most important metal composite. In this research, mechanical properties of aluminum/carbon nanotube composite were obtained using molecular dynamics simulation. Then, effect of temperature on stress–strain curve of composite was studied. The results showed by increasing temperature, the Young’s modulus of composite was decreased. More specifically increasing the temperature from 150 K to 620 K, decrease the Young’s modulus to 11.7%. The ultimate stress of composite also decreased by increasing the temperature. A continuum model of composite was presented using finite element method. The results showed the role of carbon nanotube on strengthening of composite.

RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31318-31332
Author(s):  
Md. Habibur Rahman ◽  
Shailee Mitra ◽  
Mohammad Motalab ◽  
Pritom Bose

Variations of fracture stress and Young’s modulus of graphene with the concentration of silicon doping.


2005 ◽  
Vol 891 ◽  
Author(s):  
Hyuk Soon Choi ◽  
Taebum Lee ◽  
Hyosug Lee ◽  
Jongseob Kim ◽  
Ki-Ha Hong ◽  
...  

ABSTRACTThe interests of low-k dielectric materials to reduce capacitance in multilevel metal interconnects of integrated circuits are well known in the semiconductor industry. Mechanical properties of low-k film are currently the main issues. Improved hardness and modulus are desirable because, when building a multilayered stack and doing sequential processing, films go through chemical mechanical planarization. In this proceeding, we reports the Young's moduli of the typical low k materials, and the effects of various factors for Young's moduli of materials, such as, structures of precursors, density, and porosity. Using atomistic molecular dynamics simulation with experimental measurements, the Young's moduli of films of amorphous silicon oxide in which 25% of Si-O-Si chains were replaced by Si-(CH3 H3C)-Si, Si-CH2-Si, Si-(CH2)2-Si, Si-(CH2)3-Si, Si-(CH2)4-Si, Si-(CH2)6-Si, were measured and analyzed. The predicted trends of Young's moduli of films formed by above precursors are in good consistent with those observed from experiments. The Young's moduli of materials are largely dependent on the densities of materials. Young's modulus of material increases as the density of the material increases. The chemical properties, chain length, and connectivity of material take effects on the Young's modulus of material. Given the same densities of material the smaller number of cavities per unit volume the material has, the lower Young's modulus it shows. Based on the results, the method of predict mechanical properties of materials by the conjunction of basic experimental measurements and atomistic simulation will be discussed.


RSC Advances ◽  
2012 ◽  
Vol 2 (24) ◽  
pp. 9124 ◽  
Author(s):  
Nuannuan Jing ◽  
Qingzhong Xue ◽  
Cuicui Ling ◽  
Meixia Shan ◽  
Teng Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liang Zhao ◽  
Mahyuddin K. M. Nasution ◽  
Maboud Hekmatifar ◽  
Roozbeh Sabetvand ◽  
Pavel Kamenskov ◽  
...  

AbstractIn the present study, the improvement of mechanical properties of conventional concretes using carbon nanoparticles is investigated. More precisely, carbon nanotubes are added to a pristine concrete matrix, and the mechanical properties of the resulting structure are investigated using the molecular dynamics (MD) method. Some parameters such as the mechanical behavior of the concrete matrix structure, the validation of the computational method, and the mechanical behavior of the concrete matrix structure with carbon nanotube are also examined. Also, physical quantities such as a stress–strain diagram, Poisson's coefficient, Young's modulus, and final strength are calculated and reported for atomic samples under external tension. From a numerical point of view, the quantities of Young's modulus and final strength are converged to 35 GPa and 35.38 MPa after the completion of computer simulations. This indicates the appropriate effect of carbon nanotubes in improving the mechanical behavior of concrete and the efficiency of molecular dynamics method in expressing the mechanical behavior of atomic structures such as concrete, carbon nanotubes and composite structures derived from raw materials is expressed that can be considered in industrial and construction cases.


Author(s):  
Fitriana Faizatu Zahroh ◽  
Iwan Sugihartono ◽  
Ernik D. Safitri

It has been investigated computationally Young's modulus of some metals: nickel, copper, silver, gold, and aluminum. The offset method can graphically determine Young's modulus property by determining the elastic region based on the straight line intersection formed at a 0.2% strain against the stress-strain curve. In this simulation work, Young’s modulus calculation was performed by using the LAMMPS molecular dynamics software. The interatomic potential used to represent the interactions among atoms of materials in this simulation is the Morse potential. The metals under-investigated in this work are nickel, copper, silver, gold, and aluminum, and we got the results are 209.2 GPa, 110.8 GPa, 83.8 GPa, 79.2 GPa, and 70.3 GPa, respectively. The Young's modulus of the materials was also computed as temperature variations from 300K to the melting point to determine the effect of temperature on Young's modulus, and it is tensile strength. From our work we can found that the higher the temperature, the lower Young's modulus value. In addition, it can be seen that nickel metal has good temperature resistance. This is evidenced by the change in the nickel-metal phase near its melting point.


2005 ◽  
Vol 02 (03) ◽  
pp. 315-326 ◽  
Author(s):  
LIFENG WANG ◽  
HAIYAN HU

In this paper, a study is made for the size effects on the effective Young's modulus of nano crystal copper wires. On the basis of numerical results of molecular dynamics simulation, the inhomogeneous property of the nano wires is taken into account so that the continuum model of either a rod or a beam is constructed to predict the size dependence of the effective Young's modulus. The comparison with molecular dynamics simulation based on embedded atom method shows that the new rod model enables one to predict the effective Young's modulus as accurately as existing models for the nano wires of different sizes of cross sections under axial load. Furthermore, the beam model gives better prediction than the current model for the nano wires subject to pure bending. The size effect on the elastic property can also be observed from the longitudinal and transverse natural vibration of the nano wires. In this case, the effective Young's modulus is nearly the same as that obtained through axial deformation and pure bending respectively.


Sign in / Sign up

Export Citation Format

Share Document