Computational And Experimental Research In Materials And Renewable Energy
Latest Publications


TOTAL DOCUMENTS

35
(FIVE YEARS 30)

H-INDEX

0
(FIVE YEARS 0)

Published By UPT Penerbitan Universitas Jember

2747-173x

Author(s):  
Merinda Lestari ◽  
Widia Nursiyanto ◽  
Agung Tjahjo Nugroho

Magnetic sensor is a type of sensor that utilizes changes in resistance caused by changes in the magnetic field H or B. One of the suitable magnetic materials to be used as a study material for making magnetic sensors is permalloy Ni80Fe20. The reading error of the magnetic sensor of the Ni80Fe20 permalloy material affects hysteresis curve of the material and requires correction of the angle of incidence of the external magnetic field in order to provide accurate results on the storage media. In this our current research using Finite Difference OOMMF, we investigated the effect of the angle of incidence of the external magnetic field (H) on the hysteresis curve was carried out on an application based on. The research was conducted by reviewing the parameter literature of the Ni80Fe20 permalloy material and then compiling it in a script and simulating it on an application based on Finite Difference OOMMF. The data obtained from the simulation are normalized magnetization (m), external magnetic field H and coercivity field (Hc) which have been influenced by the angle of incidence. The results of the hysteresis curve at a size of 5 nm with a variation of the angle of incidence 0o are indicated by the value of the external magnetic field H of 10000 mT to -10000 mT with a coercive field Hc of 5000 mT to -5000 mT. The normalized magnetization value m is 1 to -1. The variation of the angle of incidence of 30o produces a coercive field Hc of -108.3 mT to 108.3 mT and a normalized magnetization of 0.86 to -0.86. The 45o incident angle variation produces a coercive field Hc -88.4 mT to 88.4 mT and a normalized magnetization of -0.7 to 0.7


Author(s):  
Mariza D. Ardany ◽  
Paken Pandiangan ◽  
Moh. Hasan

Airfoil is a cross section from air plane wings can affect aerodynamic performance to lift force (FL). The lift force generated by airfoil has different values due to several external and internal factors, including angle of attack, flow rate and camber. To find the lift force of airfoils with different cambers and variations angle of attack and then flow rate can use computational fluid dynamics simulation. Computational fluid dynamics is simulation on a computer that can complete systems for fluid, heat transfer and other physical processes. This research using computational fluid dynamics simulation performed by SolidWorks, with NACA airfoil type which has different camber NACA 0012, NACA 4612 and NACA 6612. The angle of attack used in research was 0o, 4o, 8o, 12o, 16o and 20o. Flow rate used in research was 20m/s, 40 m/s, 60 m/s, 80 m/s and 100 m/s. From this research will be the bigger camber can produce a greater force lift. In addition, the greater airfoil flow rate can produce a greater force lift. This research also that the connection between force lift with coefficient lift (CL) is nonlinear quadratic form.


Author(s):  
Balqyz Lovelila Hermansyah Azari ◽  
Totok Wicaksono ◽  
Jihan Febryan Damayanti ◽  
Dheananda Fyora Hermansyah Azari

Conductive Polymers are one of the interesting topics to be developed in recent years. Conductive polymers can combine the properties of polymers and the electrical properties of metals. Research related to the electrical properties of conductive polymers, including electrical conductivity measurements and determination of activation energy has been carried out. This study aims to determine the effect of addition mass fraction of activated carbon into the nylon polymer on the conductive polymer material based on the electrical conductivity and activation energy. The variations of activated carbon used are 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% (wt/V). The conductive polymer from nylon polymer and activated carbon is made by casting solution method. The electrical conductivity measurement of the conductive polymer and the activation energy was carried out using the parallel plate method. The value of electrical conductivity increased from 5.62×10-9 ± 1.89×10-10 S/cm for the pure nylon to 2.51×10-8 ± 2.87×10-10 S/cm for the addition of mass fraction of activated carbon 8% wt/V. Meanwhile, there was a decrease in the addition of 9% wt/V and 10% wt/V of mass fraction of activated carbon, which were 2.36×10-8 ± 3.47×10-10 S/cm and 2.28×10-8 ± 4.01×10-10 S/cm. The activation energy of conductive polymer obtained decreased with increasing in the mass fraction of the activated carbon into the nylon polymer. The activation energy for the pure nylon was 0.0189 eV and 0.0127 eV for the addition of 8% wt/V mass fraction of activated carbon. Meanwhile, there was an increase in the addition of 9% wt/V and 10% wt/V mass fractions of activated carbon of 0.0145 eV and 0.0150 eV, respectively.


Author(s):  
Fikri Abdi Putra ◽  
Endhah Purwandari ◽  
Bintoro S. Nugroho

The properties of GaAs material in zinc blende type was calculated using Hiroshima Linear Plane Wave program based on the Density Functional Theory. This calculation aims to determine electronic properties of GaAs material are based on Density of States and energy band structure. This simulation’s results are DOS shows that hybridization of s orbital of Ga with s orbital of As provides covalent properties. The simulation of energy band structure from GaAs material indicates that semiconductor properties of GaAs is direct band gap. The energy band gap results obtained for GaAs is 0.80 eV. The computational result of the energy band gap calculation form HiLAPW has better accuracy and prediction with good agreement within reasonable acceptable errors when compared to some other DFT programs and the results of the experimental obtained.


Author(s):  
N. Nailatussaadah ◽  
I. Irsyad

Neutronic analysis of The SMART modular reactor fuel using SRAC 2006 has been carried out. Electrical energy is important today because the need is increasing along with the increase in human population, advanced technology and the economy. On the other hand, there are demands from the community for the clean, efficient and consistent energy. This is the reason why nuclear power plants are considered as one of the candidates for electrical energy suppliers in Indonesia in particular. This study evaluates a SMART reactor with Gadolinium as the burnable absorber material. The two kinds of fuel assembly were analyzed using the SRAC 2006 code system with the JENDL 4.0 as nuclear data library. This study aims to observe the neutronic characteristics of the fuel assembly designs according to the reference used. The results of the study show that of all types of fuel assemblies used can reach criticality at the beginning of the operating cycle and last up to 3 till 5 years when it finally reaches subcritical condition. Another parameter observed is the conversion ratio value, which from this study is in accordance with the characteristics of the conversion ratio for thermal reactors.


Author(s):  
R. Andika Putra Dwijayanto ◽  
Andang Widi Harto

One of the rarely explored molten salt reactor (MSR) designs is the molten chloride fast reactor (MCFR). This MSR design employs chloride salt instead of fluoride and operated in a fast spectrum. MCFR brings all the advantages of an MSR including breeding whilst being able to burn plutonium and minor actinides efficiently. Since not many countries have access to civilian plutonium, MCFR can also be started using low-enriched uranium (LEU). This study is an initial neutronic analysis of an MCFR using LEU as its startup fuel. Parameters analyzed are conversion ratio (CR) and its neutronic safety, namely effective delayed neutron fraction (βeff), temperature coefficient of reactivity (TCR), and void coefficient of reactivity (VCR). The core is divided into Core Zone and Blanket Zone. The fuel composition of NaCl-UCl3 with a molar fraction ratio of 60:40 and 50:50 is used in Core Zone and Blanket Zone, respectively. The neutronic calculation is performed using MCNP6 code with ENDF/B-VII library. For reference geometry, CR is valued at 0.9298, βeff at 0.00731, TCR at -19.8 pcm/°C, and average VCR at -154.31 pcm/void%. Thereby, the MCFR fulfills inherent safety criteria. Although its value is remarkably high, CR can be further optimized by modifying the separator and reflector material.


Author(s):  
Fajar Ari Wandono

The mass of the landing gear structure becomes an important aspect of the total mass of the UAV (unmanned aerial vehicle). Therefore, many efforts have been made to reduce the mass of the landing gear by performing structural optimization. Reducing the mass of the landing gear structure can be used as a substitute to increase the payload on the UAV. The landing gear structure in this paper is the main landing gear of LSU-02NGLD (LAPAN Surveillance UAV series 02 New Generation Low Drag). LSU-02NGLD is a UAV that has 2.9 m of wingspan with a total mass of 21 kg. This paper aims to optimize the main landing gear structure so that optimization can reduce the mass. The optimization was carried out using the finite element software by modeling the main landing gear structure as a 1D beam element. There were 9 beam elements in the main landing gear structure model. The cross-sectional width (w) and the cross-sectional height (h) for each element were used as design variables. The objective of the optimization was to minimize the mass while maintaining maximum bending stress not greater than 20 MPa, displacement in y-direction not greater than 1 mm, and displacement in z-direction not greater than 0.1 mm. The optimization result showed that the mass reduction of the main landing gear structure was 50%, with all constraints fulfilled.


Author(s):  
Yusuf Giri Wijaya ◽  
Nur Mufidatul Ula ◽  
M. Muksin ◽  
Mukhael Gilang Pribadi Putra Pratama

LSU-05 NG is one of the unmanned air vehicles (UAV) developed by the aviation technology center LAPAN. The LAPAN aviation technology center designed the LSU-05 NG to be able to carry a larger payload and broader range than other types of LSUs. Therefore, the LSU-05 NG uses an engine that has enough power. LSU-05 NG uses a piston-type engine with a capacity of 170 CC. UAV engine is the primary source of vibration in the UAV structure. Excessive vibration can cause damage to the UAV structure and malfunction of the UAV payload, such as sensors, control systems, and cameras. In this research, vibration measurements were carried out at 2 locations. The measurement location is on the engine and where the payload is installed. The vibration measurement on the LSU-05 NG was carried out during the ground test. The accelerometer sensor is used to measure vibrations and is connected to the NI data acquisition system and displayed with LabVIEW. The data to be taken are acceleration and frequency data with variations in the RPM value on the LSU-05 NG engine. With these measurements, the vibration characteristics caused by the engine in the LSU-05 NG structure, primarily where the payload is stored, can be known.


Author(s):  
Muhammad Fadlan Raihan ◽  
Triati Dewi Kencana Wungu ◽  
Brian Yuliarto

ZnO has received considerable attention since it has promising applications in electronic devices. Although many studies have explored the potential of ZnO as a promising material, the precise role of geometric in ZnO remains unclear. This study deals with the electronic structure of the ZnO monolayer using density functional theory (DFT). The DFT was used to investigate the band structure and density of states of the ZnO monolayer. It is observed that the structural change of ZnO from bulk to monolayer increases the bandgap by 1.84 eV without changes its natural characteristic. Moreover, This study provides information about the properties of the ZnO monolayer and its potential in electronic and magnetic devices application.


Author(s):  
Ega Abi Bahtiar ◽  
Agus Suprianto ◽  
S. Supriyadi

In Indonesia is the Iyang-Argopuro Volcano Complex. The Research uses remote sensing methods and gravity methods conducted to study thermal anomalies and subsurface structures using Data images of Landsat 8 satellite and a data gravity of GGMPlus satellite. Moreover, the study aims to estimate the number of hoisting manifestations of the earth's heat at the compound of the Iyang-Argopuro volcano. Landsat 8 satellite image data is a spectral band (band 1-9) and a thermal band (band 10 and 11). The data was done in radiometric corrections, radiance correction, and reflex corrections, and was thus obtained a value of ground surface temperature (LST). The data was done in radiometric corrections, radiance correction, and reflectance corrections, to get an LST value. Processing data gravity of GGMPlus satellites with a bouguer correction, terrain corrections up to get a Complete Bouguer Anomaly (ABL) value. Furthermore, the ABL value consisting of regional and local anomalies is separated using an upward continuation filter to obtain local anomaly values. The results obtained from this study are five points of geothermal manifestation locations in the Iyang-Argopuro Volcano Complex which are located in the northern, central, southern and eastern parts. Manifestations in the northern, central, and northeastern parts have ground surface temperatures of 24-31 ̊C. While manifestations in the central and eastern parts have a surface temperature of land 21-31 ̊C. The high ground temperature values at the five locations were associated with low gravity values ranging from -20 mGal to -10 mGal. The low gravity value is assumed to have a rock structure with a low-density value. Low-density rock structures have the possibility of an outflow zone causing the soil surface temperature to be relatively high.


Sign in / Sign up

Export Citation Format

Share Document