Investigation of the strain rate hardening behaviour of glass fibre reinforced epoxy under blast loading

Author(s):  
Mohamed A Louar ◽  
Bachir Belkacem ◽  
Hamza Ousji ◽  
Lincy Pyl ◽  
John Vantomme

This work investigates the use of blast loadings and inverse modeling for the identification of the strain rate hardening model parameters of fibre reinforced polymers. An experimental setup allowing the generation of known and predictable blast waves, leading to repeatable dynamic response in composite plates and the measurement of the displacement and strain fields, is developed. The dynamic response of the plates is measured by means of high-speed cameras and a 3D digital image correlation technique. A suitable numerical model that is able to reproduce the experimental conditions and predict the blast response of the plates is developed. Finally, the experimental measurements and the numerical calculation are combined through an inverse method in order to identify the strain rate hardening model parameters of the tensile and shear strengths of glass fibre reinforced epoxy.

Author(s):  
Radim Halama ◽  
Marek Pagáč ◽  
Zbyněk Paška ◽  
Pavel Pavlíček ◽  
Xu Chen

Abstract This paper shows some differences in stress-strain behavior of conventional and 3D print SS316L. First, the influence of strain rate on the monotonic curve has been investigated. Specimens produced by Selective Laser Melting technology were not so sensitive to the strain rate. Viscoplasticity has to be taken into account for cyclic loading modelling in the case of conventionally produced SS316L but not for the 3D printed material. A set of low-cycle fatigue tests was performed on specimens from both used production technologies. Uniaxial ratcheting tests were realized under constant amplitude of stress and varying mean stress. Experimental results show a good ratcheting endurance of SS316L produced by the Selective Laser Melting technology. Biaxial ratcheting tests were realized for 3D print SS316L only. Applied Digital Image Correlation technique makes possible to get more ratcheting curves from each ratcheting test.


2012 ◽  
Vol 26 ◽  
pp. 01039 ◽  
Author(s):  
R.A. Govender ◽  
G.S. Langdon ◽  
T.J. Cloete ◽  
G.N. Nurick

Sign in / Sign up

Export Citation Format

Share Document