Layer thickness optimization of ceramic composite for body armor by considering volume, weight, and cost

Author(s):  
Yuksel Palaci ◽  
Mustafa M Arikan

This study investigates visualization of optimized layer thickness with a ternary diagram by considering Volume, Weight, and Cost priorities to determine the composite structure of alternative ceramics to use in body armor application by using the Digital Logic Method (DLM). Three criterion priorities (volume, weight, cost) have been investigated to help designers decide on optimum ceramic material for their applications. Alumina (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), and boron carbide (B4C) were analyzed and ranked to decide for material selection based on priorities. The analysis results showed that silicon nitride (Si3N4) had the maximum performance index (PI) point (80.0) based on the volume priority. On the other hand, while boron carbide (B4C) had the maximum PI point (76.4) in terms of the weight priority, alumina (Al2O3) was determined to be the best material according to the cost priority. PI point of alumina (Al2O3) was calculated as 100. A ternary diagram was developed for decision-makers to visualize material selection performances. The optimization of the ceramic composite layer thickness of the alternative ceramic materials is visualized by considering three criteria.

Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1992 ◽  
Vol 49 (5) ◽  
pp. 239-240
Author(s):  
B. I. Kislov ◽  
L. V. Vodop'yanova

2021 ◽  
Vol 63 (5) ◽  
pp. 470-473
Author(s):  
Subramaniam Shankar ◽  
Rajavel Nithyaprakash ◽  
Balasubramaniam Rajasulochana Santhosh

Abstract Reduction in wear of artificial bio-implants results in the release of a lesser amount of wear particles into the blood stream. This paper focuses on analyzing the tribological behavior of ceramic and polyethylene bio-materials experimentally. Four different biomaterials namely Zirconia, Silicon Nitride, UHMWPE (ultra high molecular weight polyethylene) and PEEK (polyether ether ketone) are investigated for friction and wear coefficients using a pin on disc (PoD) tribometer. Alumina (Al2O3) is chosen as the disc material. Polyethylene based UHMWPE and PEEK are used as a pin material with the hemispherical end, while, Zirconia and Silicon Nitride ceramic materials are used in the form of spherical ball. 0.9 % NaCl (saline solution) is used as a lubricant medium. Zirconia showed a better reduction in friction and wear coefficient characteristics under lubrication conditions when compared with polyethylene and other ceramic materials. The estimated friction and wear coefficients would be helpful for surgeons and academicians to choose better wear-resistant bio-compatible materials for effectively design hip prosthesis. The present study compared the tribological behaviors of ceramic materials Si3N4 and ZrO2 and polyethylene materials PEEK and UHMWPE with a ceramic counterpart Al2O3 disc. In the lubrication case, ZrO2 showed a better reduction in friction and wear characteristics while in the dry case UHMWPE showed lesser wear characteristics.


2021 ◽  
Vol 43 (2) ◽  
pp. 135-144
Author(s):  
S. V. Sokhan’ ◽  
A. L. Maystrenko ◽  
A. I. Borimsky ◽  
V. V. Voznyy ◽  
V. G. Sorochenko ◽  
...  

2021 ◽  
pp. 21-33
Author(s):  
A.M. Shestakov ◽  

The paper considers the process of pyrolysis of polymers-precursors, and also shows the influence of various parameters of technological processes for obtaining ceramics on its composition, structure, and properties. The main types of binary, ternary and multicomponent silicon-based ceramics, methods of its preparation, features of structure and properties are considered, and promising directions of application of ceramics are determined. The possibility of obtaining porous ceramic materials (ceramic foams) with controlled porosity and ceramic composite materials with a given composition is noted.


Sign in / Sign up

Export Citation Format

Share Document