Modeling the pressure strain correlation in turbulent flows using deep neural networks

Author(s):  
Jyoti P Panda ◽  
Hari V Warrior

The pressure strain correlation plays a critical role in the Reynolds stress transport modeling. Accurate modeling of the pressure strain correlation leads to the proper prediction of turbulence stresses and subsequently the other terms of engineering interest. However, classical pressure strain correlation models are often unreliable for complex turbulent flows. Machine learning–based models have shown promise in turbulence modeling, but their application has been largely restricted to eddy viscosity–based models. In this article, we outline a rationale for the preferential application of machine learning and turbulence data to develop models at the level of Reynolds stress modeling. As an illustration, we develop data-driven models for the pressure strain correlation for turbulent channel flow using neural networks. The input features of the neural networks are chosen using physics-based rationale. The networks are trained with the high-resolution DNS data of turbulent channel flow at different friction Reynolds numbers (Reλ). The testing of the models is performed for unknown flow statistics at other Reλ and also for turbulent plane Couette flows. Based on the results presented in this article, the proposed machine learning framework exhibits considerable promise and may be utilized for the development of accurate Reynolds stress models for flow prediction.

2021 ◽  
Vol 2099 (1) ◽  
pp. 012020
Author(s):  
A Chakrabarty ◽  
S N Yakovenko

Abstract The study is focused on the performance of machine-learning methods applied to improve the velocity field predictions in canonical turbulent flows by the Reynolds-averaged Navier–Stokes (RANS) equation models. A key issue here is to approximate the unknown term of the Reynolds stress (RS) tensor needed to close the RANS equations. A turbulent channel flow with the curved backward-facing step on the bottom has the high-fidelity LES data set. It is chosen as the test case to examine possibilities of GEP (gene expression programming) of formulating the enhanced RANS approximations. Such a symbolic regression technique allows us to get the new explicit expressions for the RS anisotropy tensor. Results obtained by the new model produced using GEP are compared with those from the LES data (serving as the target benchmark solution during the machine-learning algorithm training) and from the conventional RANS model with the linear gradient Boussinesq hypothesis for the Reynolds stress tensor.


2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


2010 ◽  
Vol 53 (4) ◽  
pp. 725-734 ◽  
Author(s):  
ZiXuan Yang ◽  
GuiXiang Cui ◽  
ChunXiao Xu ◽  
Liang Shao ◽  
ZhaoShun Zhang

Author(s):  
Z. Wu ◽  
J. B. Young

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.


Author(s):  
Xiaoping Chen ◽  
Hua-Shu Dou ◽  
Qi Liu ◽  
Zuchao Zhu ◽  
Wei Zhang

To study the Reynolds stress budgets, direct numerical simulations of high-temperature supersonic turbulent channel flow for thermally perfect gas and calorically perfect gas are conducted at Mach number 3.0 and Reynolds number 4800 combined with a dimensional wall temperature of 596.30 K. The reliability of the direct numerical simulation data is verified by comparison with previous results ( J Fluid Mech 1995, vol. 305, pp.159–183). The effects of variable specific heat are important because the vibrational energy excited degree exceeds 0.1. The viscous diffusion, pressure–velocity gradient correlation, and dissipation terms in the Reynolds stress budgets for TPG, except the streamwise component, are larger than those for calorically perfect gas close to the wall. Compressibility-related term decreases when thermally perfect gas is considered. The major difference for both gas models is mainly due to variations in mean flow properties. Inter-component transfer related to pressure–velocity gradient correlation term can be distinguished into inner and outer regions, whose critical position is approximately 16 for both gas models.


2001 ◽  
Vol 13 (4) ◽  
pp. 1016-1027 ◽  
Author(s):  
Costas D. Dimitropoulos ◽  
R. Sureshkumar ◽  
Antony N. Beris ◽  
Robert A. Handler

Sign in / Sign up

Export Citation Format

Share Document