scholarly journals Adaptive calibration for reduced fuel consumption and emissions

Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Harald Waschl

This paper presents a model-based approach for continuously adapting an engine calibration to the traffic and changing pollutant emission limits. The proposed strategy does not need additional experimental tests beyond those required by the traditional calibration approach. The method utilises information currently available in the engine control unit to adapt the engine control to the particular driving patterns of a given driver. Additional information about the emissions limits should be provided by an external structure if an adaptation to the pollutant immission is required. The proposed strategy has been implemented in a light-duty diesel engine, and showed a good potential to keep NO x emissions around a defined limit.

2019 ◽  
Vol 20 (10) ◽  
pp. 1047-1058 ◽  
Author(s):  
Giovanni Vagnoni ◽  
Markus Eisenbarth ◽  
Jakob Andert ◽  
Giuseppe Sammito ◽  
Joschka Schaub ◽  
...  

The increasing connectivity of future vehicles allows the prediction of the powertrain operational profiles. This technology will improve the transient control of the engine and its exhaust gas aftertreatment systems. This article describes the development of a rule-based algorithm for the air path control, which uses the knowledge of upcoming driving events to reduce especially [Formula: see text] and particulate (soot) emissions. In the first section of this article, the boosting and the lean [Formula: see text] trap systems of a diesel powertrain are investigated as relevant sub-systems for shorter prediction horizons, suitable for Car-to-X communication range. Reference control strategies, based on state-of-the-art engine control unit algorithms and suitable predictive control logics, are compared for the two sub-systems in a model in the loop simulation environment. The simulation driving cycles are based on Worldwide harmonized Light-duty Test Cycle and Real Driving Emissions regulations. Due to the shorter, and consequently more probable, prediction horizon and the demonstrated emission improvements, a dedicated rule-based algorithm for the air path control is developed and benchmarked in the Worldwide harmonized Light-duty Test Cycle as described in the second part of this article. Worldwide harmonized Light-duty Test Cycle test results show an improvement potential for engine-out soot and [Formula: see text] emissions of up to 5.2% and 1.2%, respectively, for the air path case and a reduction of the average fuel consumption in Real Driving Emissions of up to 1% for the lean NOx trap case. In addition, the developed rule-based algorithm allows the adjustment of the desired NOx–soot trade-off, while keeping the fuel consumption constant. The study concludes with brief recommendations for future research directions, as for example, the introduction of a prediction module for the estimation of the vehicle operational profile in the prediction horizon.


Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


2018 ◽  
Author(s):  
Chiara Guido ◽  
Pierpaolo Napolitano ◽  
Valentina Fraioli ◽  
Carlo Beatrice ◽  
Nicola Del Giacomo

2020 ◽  
pp. 146808742091880
Author(s):  
José Manuel Luján ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Varun Pandey

This article proposes a method for fuel minimisation of a Diesel engine with constrained [Formula: see text] emission in actual driving mission. Specifically, the methodology involves three developments: The first is a driving cycle prediction tool which is based on the space-variant transition probability matrix obtained from an actual vehicle speed dataset. Then, a vehicle and an engine model is developed to predict the engine performance depending on the calibration for the estimated driving cycle. Finally, a controller is proposed which adapts the start-of-injection calibration map to fulfil the [Formula: see text] emission constraint while minimising the fuel consumption. The calibration is adapted during a predefined time window based on the predicted engine performance on the estimated cycle and the difference between the actual and the constraint on engine [Formula: see text] emissions. The method assessment was done experimentally in the engine test set-up. The engine performace using the method is compared with the state-of-the-art static calibration method for different [Formula: see text] emission limits on real driving cycles. The online implementation of the method shows that the fuel consumption can be reduced by 3%–4% while staying within the emission limits, indicating that the estimation method is able to capture the main driving cycle characterstics.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Andrea Rapisarda ◽  
Alessio Desando ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of modern aircrafts propulsion systems is strongly influenced by the important objective of environmental impact reduction. Through a great number of researches carried out in the last decades, significant improvements have been obtained in terms of lower fuel consumption and pollutant emission. Experimental tests are a necessary step to achieve new solutions that are more efficient than the current designs, even if during the preliminary design phase, a valid alternative to expensive experimental tests is the implementation of numerical models. The processing power of modern computers allows indeed the simulation of more complex and detailed phenomena than the past years. The present work focuses on the implementation of a numerical model for rotating stepped labyrinth seals installed in low-pressure turbines. These components are widely employed in sealing turbomachinery to reduce the leakage flow between rotating components. The numerical simulations were performed by using computational fluid dynamics (CFD) methodology, focusing on the leakage performances at different rotating speeds and inlet preswirl ratios. Investigations on velocity profiles into seal cavities were also carried out. To begin with, a smooth labyrinth seal model was validated by using the experimental data found in the literature. The numerical simulations were extended to the honeycomb labyrinth seals, with the validation performed on the velocity profiles. Then, the effects of two geometrical parameters, the rounded fin tip leading edge, and the step position were numerically investigated for both smooth and honeycomb labyrinth seals. The obtained results are generally in good agreement with the experimental data. The main effect found when the fin tip leading edge was rounded was a large increase in leakage flow, while the step position contribution to the flow path behavior is nonmonotone.


Author(s):  
M. C. Cameretti ◽  
E. Landolfi ◽  
T. Tesone ◽  
A. Caraceni

The calibration of the engine control unit is increased for the development of the whole automotive system. The aim is to calibrate the electronic engine control to match the decreasing emission requirements and increasing fuel economy demands. The reduction of the number of tests on vehicles represents one of the most important requirements for increasing efficiency of the engine calibration process. However, the definition of the design of experiment is not straightforward because the data is not known beforehand, so it is difficult to process and analyse this data to achieve a globally valid model. To reduce time effort and costs the virtual calibration can be a valid solution. This procedure is called software in the loop (SIL) calibration able to develop a process to systematically identify the optimal balance of engine performance, emissions and fuel economy. In this work, a virtual calibration methodology is presented by using a two-stage model to get minimum exhaust emissions of a diesel engine. The data used are from a GT-Power model of a 3L supercharged diesel engine. The model is able to calculate the engine emissions for different engine parameters (such as the start of injection, EGR fraction and rail pressure) and from optimisation process, new injection start maps that reduce pollutant emissions are created.


2020 ◽  
Vol 20 (1) ◽  
pp. 16
Author(s):  
Arnez Pramesti Ardi ◽  
Ilham Sukma Aulia ◽  
Rizky Ardianto Priramadhi ◽  
Denny Darlis

Based on data from the Indonesian Traffic Corps by September 2019, the number of car accidents was dominated by rear-hit crashes with 6,966 accidents. Most of these accidents occurred during car convoys. It needs a car-to-car communication to increase driver awareness. One of the technologies that can be applied is Visible Light Communication (VLC) and infrared communication. The transmitted data are the vehicle speed data, throttle position, and brake stepping indicator. The data are obtained by reading the Engine Control Unit (ECU) in the car. The data are packaged from the three data and sent to other cars at day and night using VLC and infrared communication. The experimental results show that in a communication system that uses VLC, data can be exchanged between cars during the day up to 2 meters and at night up to 11 meters. Otherwise, in infrared communication, vehicles can communicate during the day up to 2 meters and at night up to 0.7 meter. The test was also carried out with some conditions such as rain, smoke, passers, and other vehicle lights.


Author(s):  
A. Vasilyev ◽  
V. Zakharov ◽  
O. Chelebyan ◽  
O. Zubkova

Abstract At the ASME Turbo Expo 2018 conference held in Oslo (Norway) on the 11th-15th of June 2018, the paper GT2018-75419 «Experience of Low-Emission Combustion of Aviation and Bio Fuels in Individual Flames after Front Mini-Modules of a Combustion Chamber» was published. This paper continues the studies devoted to the low-emission combustion of liquid fuels in GTE combustors. The paper presents a description of more detailed studies of the front module with a staged pneumatic fuel spray. The aerodynamic computations of the front module were conducted, and the disperse characteristics of the fuel-air spray were measured. The experimental research was carried out in two directions: 1) probing of the 3-burner sector flame tube at the distance of one third of its length (temperature field and gas sampling); 2) numerical study of the model combustor with actual arrangement of the modules in the dome within a wide range of fuel-air ratio. The calculated and experimental data of velocity field behind the front module were compared. And new data about the flame structure inside the test sector were obtained. Experimental data confirm the results of preliminary studies of the 3-burner sector: combustion efficiency is higher than 99.8%, EiNOx is at the level of 2–3 g/fuel kg at the combustor inlet air temperature of 680K and fuel-air ratio of 0.0225. The conducted research allowed to receive additional information on the influence of some design units on the pollutant emission and to estimate the different elements of computational methods for simulation of a low-emission combustor with a multi-atomizer dome.


Sign in / Sign up

Export Citation Format

Share Document