Robust adaptive anti-windup wheel slip tracking control for intelligent vehicle with fast terminal sliding mode observer

Author(s):  
Jiaxu Zhang ◽  
Shiying Zhou

Aiming at the requirement of the intelligent vehicle for the fast and stable tracking control of the wheel slip, a novel robust adaptive anti-windup wheel slip tracking control method with fast terminal sliding mode observer is proposed. First, a fast terminal sliding mode observer based on equivalent control on the sliding surface is proposed to estimate the states of the wheel slip dynamic system to lay the foundation for the full state feedback control law design. Second, a robust adaptive anti-windup wheel slip tracking control law with lumped uncertainty observer and additional anti-windup dynamics is derived based on Lyapunov-based method. The lumped uncertainty observer utilizes the nonlinear mapping ability of the radius basis function neural network to estimate and compensate the lumped uncertainty of the system, and the unknown optimal weight vector of the radius basis function neural network is updated by adaptive law. The additional anti-windup dynamics is used to suppress the effect of the input saturation on the stability of the system. Finally, the performance of the proposed method is verified through simulations of various maneuvers on vehicle dynamics simulation software.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He ◽  
Zhijun Chen ◽  
Yong Zhao

This article investigates the distributed attitude consensus tracking control for spacecraft formation flying with unknown external disturbances and model uncertainties. First, a terminal sliding mode disturbance observer (TSMDO) is constructed to estimate the generalized disturbances including external disturbances and model uncertainties. The finite-time convergence of the estimation errors using TSMDO is analyzed. Second, a variable structure control law is developed to avoid introducing initial errors of the TSMDO. Third, a novel adaptive nonsingular fast terminal sliding mode (ANFTSM) control law based on TSMDO is proposed to ensure the convergence of attitude tracking errors to zero. Based on theoretical analysis, the finite-time stability can be guaranteed by Lyapunov theory. Finally, the effectiveness of the developed control law is verified via numerical simulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Siyi Chen ◽  
Wei Liu ◽  
Huixian Huang

Aiming at the tracking control problem of a class of uncertain nonlinear systems, a nonsingular fast terminal sliding mode control scheme combining RBF network and disturbance observer is proposed. The sliding mode controller is designed by using nonsingular fast terminal sliding mode and second power reaching law to solve the problem of singularity and slow convergence in traditional terminal sliding mode control. By using the universal approximation of RBF network, the unknown nonlinear function of the system is approximated, and the disturbance observer is designed by using the hyperbolic tangent nonlinear tracking differentiator (TANH-NTD) to estimate the interference of the system and enhance the robustness of the system. The stability of the system is proved by the Lyapunov principle. The numerical simulation results show that the method can shorten the system arrival time, improve the tracking accuracy, and suppress the chattering phenomenon.


Sign in / Sign up

Export Citation Format

Share Document