An anti-crystallization design of selective catalytic reduction nozzle holder

Author(s):  
Dewen Liu ◽  
Kai Lu ◽  
Shusen Liu ◽  
Yan Wu ◽  
Shuzhan Bai

From the aspect of reducing the risk of crystallization on nozzle surface, a new design of nozzle protective cover was to solve the problem in selective catalytic reduction (SCR) urea injection system. The simulation calculation and experimental verification methods were used to compare different schemes. The results show that reducing the height of nozzle holder can reduce the vortex currents near nozzle surface and effectively reduce the risk of crystallization on the nozzle surface. It is proposed to install a protective cover in the nozzle holder under the scheme of reducing the height of nozzle holder, which can further eliminate the vortex. Simulation and test results demonstrate good agreement under the rated running condition. The scheme of adding a protective cover in the nozzle holder shows the least crystallization risk by computational fluid dynamics (CFD) method. The crystallization cycle test shows that, after the height of nozzle holder is reduced, the risk of crystallization on the nozzle surface is reduced correspondingly. The addition of a protective cover in the nozzle holder solves the problem of crystallization on the nozzle surface, which provides a new method for anti-crystallization design.

2011 ◽  
Vol 201-203 ◽  
pp. 643-646 ◽  
Author(s):  
Bo Yan Xu ◽  
Hai Ying Tian ◽  
Jie Yang ◽  
De Zhi Sun ◽  
Shao Li Cai

SNCR (Selective Non Catalytic Reduction) system is proposed, with 40% methylamine aqueous solution as reducing agent to reduce NOx in diesel exhaust gas. The effect of injection position and volume on the reduction efficiency through the test bench is systematically researched. A three-dimensional model of a full-sized diesel SNCR system generated by CFD software FIRE is used to investigate the reduction efficiency under different temperatures. The simulated results have a good agreement with the test results, and it can be used to optimize SNCR system. The results can indicate the practical application of this technology.


2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Tiecheng Wu ◽  
Wanzhen Luo ◽  
Dapeng Jiang ◽  
Rui Deng ◽  
Shuo Huang

The effect of waves on ice sheet is critical in the marginal ice zone (MIZ). Waves break large sea ice into small pieces and cause them to collide with each other. Simultaneously, the interaction between sea ice and waves attenuates these waves. In this study, a numerical research is conducted based on a computational fluid dynamics (CFD) method to investigate the response of single ice floe to wave action. The obtained results demonstrate that the sea ice has a violent six degree of freedom (6DoF) motion in waves. Ice floes with different sizes, thicknesses, and shapes exhibit different 6DoF motions under the action of waves. The heave and surge response amplitude operator (RAO) of the sea ice are related to wavelength. Furthermore, the overwash phenomenon can be observed in the simulation. The obtained results are compared with the model test in the towing tank based on artificial ice, and they agree well with test results.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


Author(s):  
Matthew Laney ◽  
Ronald Farrell

Computational Fluid Dynamics (CFD) is increasingly being used as a reliable method for determining flow characteristics of a wide range of flow situations. This paper presents an extension of paper PVP2017-66269, “Check Valve Flow and Disk Lift Simulation Using CFD” [1], and utilizes some of the same concepts to characterize flow through piston-lift check valves. The previous example considered a swing check valve involving rotational movement; this example considers a vertical lift piston check valve involving translational movement. Specifically, CFD was used to determine valve flow coefficients (CV) as a function of disk lift position as well as to determine the flow rate required to achieve full open or predict intermediate disk lift positions. The CFX application, which is part of the ANSYS suite of finite element software, was used to determine the flow characteristics. As presented in PVP2017-66269, balancing flow-induced forces on the check element and considering the disk assembly weight, the valve lift behavior can be predicted. Results from the CFX analysis were compared to recent test results of a skirted disk-piston check valve and previous test results of a standard disk-piston check valve. The results showed good agreement in most cases. This validates that flow characteristics across valves with different types of check elements at different disk lift positions can be reliably predicted using CFD analysis. It is important to note that while the test results and CFD analysis showed good agreement, it was vital that actual testing be performed in order to validate the approach. This follows the recommendation outlined in the previous paper.


2016 ◽  
Vol 120 (1231) ◽  
pp. 1386-1424 ◽  
Author(s):  
G.N. Barakos ◽  
A. Jimenez Garcia

ABSTRACTAnalysis of the performance of a 1/4.71 model-scale and full-scale Sikorsky S-76 main rotor in hover is presented using the multi-block computational fluid dynamics (CFD) solver of Glasgow University. For the model-scale blade, three different tip shapes were compared for a range of collective pitch and tip Mach numbers. It was found that the anhedral tip provided the highest Figure of Merit. Rigid and elastic full-scale S-76 rotor blades were investigated using a loosely coupled CFD/Computational Structural Dynamics (CSD) method. Results showed that aeroelastic effects were more significant for high thrust cases. Finally, an acoustic study was performed in the tip-path-plane of both rotors, showing good agreement in the thickness and loading noise with the theory. For the anhedral tip of the model-scale blade, a reduction of 5% of the noise level was predicted. The overall good agreement with the theory and experimental data demonstrated the capability of the present CFD method to predict rotor flows accurately.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Matthew J. Hill ◽  
Robert F. Kunz ◽  
Richard B. Medvitz ◽  
Robert F. Handschuh ◽  
Lyle N. Long ◽  
...  

A computational fluid dynamics (CFD) method has been applied to gear configurations with and without shrouding. The goals of this work have been to validate the numerical and modeling approaches used for these applications and to develop physical understanding of the aerodynamics of gear windage loss. Several spur gear geometries are considered, for which experimental data are available. Various canonical shrouding configurations and free spinning (no shroud) cases are studied. Comparisons are made with experimental data from open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility, Cleveland, OH. The results show good agreement with the experiment. The parametric shroud configuration studies carried out in the Glenn experiments and the CFD analyses elucidate the physical mechanisms of windage losses as well as mitigation strategies due to shrouding and newly proposed tooth contour modifications.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Zhi-jiang Jin ◽  
Zhi-xin Gao ◽  
Ming Zhang ◽  
Jin-yuan Qian

Pilot-control globe valve (PCGV) can use the pressure drop caused by fluid flowing through the orifice located at valve core bottom to open or close the main valve using a small pilot valve. In this paper, computational fluid dynamics (CFD) method is adopted to analyze the pressure drop before and after valve core of PCGV and minor loss of orifice under different structural parameters and inlet velocities, and the simulation results show a good agreement with the experimental results. It turns out that the valve diameters, orifice diameters, and pilot pipe diameters have great influences on the pressure drop and the loss coefficient. Moreover, an expression is proposed which can be used to calculate minor loss coefficient, then to estimate the pressure drop and driving force of a PCGV within limited conditions. This paper can be referenced as guidance for deciding the dimension of structural parameters and spring stiffness during design process of a PCGV.


Sign in / Sign up

Export Citation Format

Share Document