Eco-driving control of electric vehicle with battery dynamic model and multiple traffic signals

Author(s):  
Hafiz Muhammad Yasir Naeem ◽  
Aamer Iqbal Bhatti ◽  
Yasir Awais Butt ◽  
Qadeer Ahmed

Limited capacity and short life cycle of a battery are the major impediments in development of practical Electric Vehicles (EVs). Eco-driving is an optimization technique through which a velocity trajectory that consumes minimum energy is advised to the driver. However, presence of traffic signals to control large traffic network degrades the performance of eco-driving; as applying brakes to stop and then maximum re-acceleration to restart a trip consumes lot of energy. Eco-driving problem with multiple traffic signals and static model of battery has been proposed as Two Point Boundary Value Problem (TPBVP). TPBVP fails to solve multi-phase problem as a single phase due to discontinuity of the co-states at the junction, that is, start of a new phase. This paper investigates an optimal solution with both EV and battery dynamics in the presence of multiple traffic signals as Multi Point Boundary Value Problem (MPBVP) using multiple shooting technique. Traffic signals come at some intermediate points of a trip. MPBVP ensures continuity at the junction to solve the multi-phase problem as a single phase through inter dependencies between each phases. Goal of this work is not only to solve constrained eco-driving problem with traffic signals but also include charging and discharging limits on battery that indirectly improves battery’s life cycle. Results indicate that EV has crossed all the traffic signals during their green duration without applying brakes with also satisfying all the other constraints and continuity condition. Moreover, it can be seen that energy consumption using MPBVP is also marginally lesser as compared to TPBVP.

2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


SeMA Journal ◽  
2021 ◽  
Author(s):  
Rosana Rodríguez-López ◽  
Rakesh Tiwari

AbstractThe aim of this paper is to introduce a new class of mixed contractions which allow to revise and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We also provide an example corresponding to this class of mappings and show how the new fixed point result relates to the above-mentioned result in [6]. Further, we present an application to the solvability of a two-point boundary value problem for second order differential equations.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
R. Dhineshbabu ◽  
S. Rashid ◽  
M. Rehman

Abstract The results reported in this paper are concerned with the existence and uniqueness of solutions of discrete fractional order two-point boundary value problem. The results are developed by employing the properties of Caputo and Riemann–Liouville fractional difference operators, the contraction mapping principle and the Brouwer fixed point theorem. Furthermore, the conditions for Hyers–Ulam stability and Hyers–Ulam–Rassias stability of the proposed discrete fractional boundary value problem are established. The applicability of the theoretical findings has been demonstrated with relevant practical examples. The analysis of the considered mathematical models is illustrated by figures and presented in tabular forms. The results are compared and the occurrence of overlapping/non-overlapping has been discussed.


1997 ◽  
Vol 4 (6) ◽  
pp. 557-566
Author(s):  
B. Půža

Abstract Sufficient conditions of solvability and unique solvability of the boundary value problem u (m)(t) = f(t, u(τ 11(t)), . . . , u(τ 1k (t)), . . . , u (m–1)(τ m1(t)), . . . . . . , u (m–1)(τ mk (t))), u(t) = 0, for t ∉ [a, b], u (i–1)(a) = 0 (i = 1, . . . , m – 1), u (m–1)(b) = 0, are established, where τ ij : [a, b] → R (i = 1, . . . , m; j = 1, . . . , k) are measurable functions and the vector function f : ]a, b[×Rkmn → Rn is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.


Author(s):  
John Locker ◽  
P. M. Prenter

AbstractLet L, T, S, and R be closed densely defined linear operators from a Hubert space X into X where L can be factored as L = TS + R. The equation Lu = f is equivalent to the linear system Tv + Ru = f and Su = v. If Lu = f is a two-point boundary value problem, numerical solution of the split system admits cruder approximations than the unsplit equations. This paper develops the theory of such splittings together with the theory of the Methods of Least Squares and of Collocation for the split system. Error estimates in both L2 and L∞ norms are obtained for both methods.


Sign in / Sign up

Export Citation Format

Share Document