A numerical study of snow accumulation on the bogies of high-speed trains based on coupling improved delayed detached eddy simulation and discrete phase model

Author(s):  
Mingyang Liu ◽  
Jiabin Wang ◽  
Huifen Zhu ◽  
Sinisa Krajnovic ◽  
Guangjun Gao

A numerical simulation method based on the improved delayed detached eddy simulation coupled with a discrete phase model is used to study the influence of the snow on the performance of bogies of a high-speed train running in snowy weather. The snow particle trajectories, mass of snow packing on the bogie, and thickness of snow accumulation have been analyzed to investigate the flow mechanisms of snow accumulation on different parts of the bogies. The results show that the snow accumulation on the first bogie of the head vehicle is almost the same as that of the second bogie, but the total accumulated snow on the top side of the second bogie is more than 74% higher than that of the first bogie. Among all the components of the bogies, the motors were found to be strongly influenced by the snow accumulation. The underlying flow mechanisms responsible for the snow accumulations are discussed.

Author(s):  
Jiabin Wang ◽  
Guangjun Gao ◽  
Yan Zhang ◽  
Kan He ◽  
Jie Zhang

When high-speed trains run on a snowy railway line in cold weather, a large amount of snow and ice will accumulate on the brake calipers, which can lead to huge safety problems. In this paper, to solve this issue, a numerical method based on the detached eddy simulation was used to explore the flow features of a high-speed train running in cold weather. The accuracy of mesh resolution and methodology of Computational Fluid Dynamics (CFD) was validated against the wind tunnel tests. A discrete phase model was used to investigate the process of snow accumulation on the brake calipers by analysing the movement characteristics of snow particles. Based on this analysis, three kinds of anti-snow packing shields for the brake calipers were designed, and the shielding effects were compared via numerical simulations. The results show that a large amount of snow particles below the bogie directly impact the brake calipers causing massive snow packing on the bottom surfaces; some snow particles reflected from the rear equipment cabin cover return to the bogie region and accumulates on the upper surfaces. With the application of anti-snow packing shields with trapezoidal-, triangular- and cambered-shaped openings, the rates of snow accumulation on the brake calipers were reduced by 18.53, 26.68 and 38.81%, respectively. The cambered type provides the best anti-snow packing performance for the brake calipers.


Author(s):  
Guangjun Gao ◽  
Yan Zhang ◽  
Fei Xie ◽  
Jie Zhang ◽  
Kan He ◽  
...  

In this paper, the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with an RNG double-equation turbulence model and a discrete phase model were used for the investigation of snow accumulation on the bogie of a high-speed train. Two kinds of deflector plates, one installed at the front end and the other at the rear end of the bogie, were proposed to reduce snow accumulation. The accuracy of the CFD methodology was validated against wind tunnel tests. The results showed that high-speed air will impact the plates where snow particles get accumulated. The snow covering on the bogie rarely drifts back into the bogie region with air. The amount of accumulating snow in the optimum models is reduced by 50.58% on average as compared to those in the original models. At the rear end of the bogie, the inclined deflector plate reduced snow accumulation by up to 10.91% compared to the vertical deflector plate.


2017 ◽  
Vol 10 (6) ◽  
pp. 1729-1745 ◽  
Author(s):  
F. Xie ◽  
Jie Zhang ◽  
G. Gao ◽  
K. He ◽  
Y. Zhang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 381
Author(s):  
Hongbo Zhu ◽  
Jie Su ◽  
Xuesen Wei ◽  
Zhaolong Han ◽  
Dai Zhou ◽  
...  

The haze-fog particle dispersion in urban communities will cause serious health and environmental problems, which has aroused society attention. The aim of the present investigation is to reveal the underlying mechanisms of haze-fog particle dispersion via Computational Fluid Dynamics (CFD) method, and then to provide a groundwork for the optimal spatial arrangement of urban architecture. The Delayed Detached-eddy Simulation turbulence model (DDES) and Discrete Phase Model (DPM) are utilized to investigate the wind flow distribution and the particle dispersion around the building group. The numerical results show that the particle dispersion is dominated by the incoming wind flow, the layout of architectural space and the type and distribution of vortex. The ‘single body’ wake pattern and the vortex impingement wake pattern are identified in the wind flow field, which have different effects on the distribution of haze-fog particle. The cavity formed by the layout of the building group induces primary vortex and secondary vortex, which will make it more difficult for the particles entering the square cavity to flow out. Moreover, the concentration of the particle in the rear of the buildings is relatively low due the effect of attached vortices.


Author(s):  
Tong Li ◽  
Yibin Wang ◽  
Ning Zhao

The simple frigate shape (SFS) as defined by The Technical Co-operative Program (TTCP), is a simplified model of the frigate, which helps to investigate the basic flow fields of a frigate. In this paper, the flow fields of the different modified SFS models, consisting of a bluff body superstructure and the deck, were numerically studied. A parametric study was conducted by varying both the superstructure length L and width B to investigate the recirculation zone behind the hangar. The size and the position of the recirculation zones were compared between different models. The numerical simulation results show that the size and the location of the recirculation zone are significantly affected by the superstructure length and width. The results obtained by Reynolds-averaged Navier-Stokes method were also compared well with both the time averaged Improved Delayed Detached-Eddy Simulation results and the experimental data. In addition, by varying the model size and inflow velocity, various flow fields were numerically studied, which indicated that the changing of Reynolds number has tiny effect on the variation of the dimensionless size of the recirculation zone. The results in this study have certain reference value for the design of the frigate superstructure.


2021 ◽  
Vol 11 (2) ◽  
pp. 784
Author(s):  
Zhenxu Sun ◽  
Shuanbao Yao ◽  
Lianyi Wei ◽  
Yongfang Yao ◽  
Guowei Yang

The structural design of the streamlined shape is the basis for high-speed train aerodynamic design. With use of the delayed detached-eddy simulation (DDES) method, the influence of four different structural types of the streamlined shape on aerodynamic performance and flow mechanism was investigated. These four designs were chosen elaborately, including a double-arch ellipsoid shape, a single-arch ellipsoid shape, a spindle shape with a front cowcatcher and a double-arch wide-flat shape. Two different running scenes, trains running in the open air or in crosswind conditions, were considered. Results reveal that when dealing with drag reduction of the whole train running in the open air, it needs to take into account how air resistance is distributed on both noses and then deal with them both rather than adjust only the head or the tail. An asymmetrical design is feasible with the head being a single-arch ellipsoid and the tail being a spindle with a front cowcatcher to achieve the minimum drag reduction. The single-arch ellipsoid design on both noses could aid in moderating the transverse amplitude of the side force on the tail resulting from the asymmetrical vortex structures in the flow field behind the tail. When crosswind is considered, the pressure distribution on the train surface becomes more disturbed, resulting in the increase of the side force and lift. The current study reveals that the double-arch wide-flat streamlined design helps to alleviate the side force and lift on both noses. The magnitude of side force on the head is 10 times as large as that on the tail while the lift on the head is slightly above that on the tail. Change of positions where flow separation takes place on the streamlined part is the main cause that leads to the opposite behaviors of pressure distribution on the head and on the tail. Under the influence of the ambient wind, flow separation occurs about distinct positions on the train surface and intricate vortices are generated at the leeward side, which add to the aerodynamic loads on the train in crosswind conditions. These results could help gain insight on choosing a most suitable streamlined shape under specific running conditions and acquiring a universal optimum nose shape as well.


Author(s):  
Elizaveta Ivanova ◽  
Gregory M. Laskowski

This paper presents the results of a numerical study on the predictive capabilities of Large Eddy Simulation (LES) and hybrid RANS/LES methods for heat transfer, mean velocity, and turbulence in a fundamental trailing edge slot. The geometry represents a landless slot (two-dimensional wall jet) with adjustable slot lip thickness. The reference experimental data taken from the publications of Kacker and Whitelaw [1] [2] [3] [4] contains the adiabatic wall effectiveness together with the velocity and the Reynolds-stress profiles for various blowing ratios and slot lip thicknesses. The simulations were conducted at three different lip thickness and several blowing ratio values. The comparison with the experimental data shows a general advantage of LES and hybrid RANS/LES methods against unsteady RANS. The predictive capability of the tested LES models (dynamic ksgs-equation [5] and WALE [6]) was comparable. The Improved Delayed Detached Eddy Simulation (IDDES) hybrid method [7] also shows satisfactory agreement with the experimental data. In addition to the described baseline investigations, the influence of the inlet turbulence boundary conditions and their implication for the initial mixing layer and heat transfer development were studied for both LES and IDDES.


Sign in / Sign up

Export Citation Format

Share Document