Flow separation control on a highly loaded compressor cascade using endwall synthetic jets

Author(s):  
Yong Qin ◽  
Yanping Song ◽  
Ruoyu Wang ◽  
Huaping Liu ◽  
Fu Chen

This paper presents flow separation control conducted on a highly loaded compressor stator cascade using endwall synthetic jets. Numerical methods are employed and mechanisms of endwall synthetic jets in improving the cascade performance are discussed in detail. The influence of several actuation parameters is also investigated. Results show that endwall synthetic jets are able to improve the flows in the blade passage significantly, a maximum loss reduction of 21.63% and a pressure rise increment of 5.60% are obtained at design condition. Apart from energizing the low momentum fluid inside endwall boundary layer by streamwise momentum addition, endwall synthetic jets could induce a streamwise jet vortex and impede the transverse movement of endwall boundary layer through upwash and downwash. Hence, at the expense of slightly degraded near-wall flows, the formation and further evolution of passage vortex would be delayed and flows in the midspan region would be improved notably. The effectiveness of endwall synthetic jets relies on the proper selection of actuation position and jet angle. Flow control turns out to be the most efficient when the actuator is positioned at just upstream of corner separation region with a relatively small jet angle, and a large enough injected momentum is also necessary. Additionally, the adaptability of the actuation at off-design conditions is validated in the present study.

Author(s):  
Yong Qin ◽  
Ruoyu Wang ◽  
Yanping Song ◽  
Fu Chen ◽  
Huaping Liu

Numerical investigations on the control effects of synthetic jets are conducted upon a highly loaded compressor stator cascade. The influence of forcing parameters including actuation frequency, jet amplitude and slot location are analyzed in detail with the single-slit synthetic jet. Besides, a new slot arrangement is put forward for the purpose of effectively controlling flow separation. Simulation results validate the remarkable effectiveness of the single-slit synthetic jet on controlling flow separation. Owing to the coupling effect between the jet and the main flow, the actuation appears to be most efficient under the characteristic frequency of the main flow passing through the airfoil. Additionally, with the increase of jet momentum coefficient, the control effect is enhanced at first and then decreased, depending on the two aspects: the improvements of aerodynamic performance by momentum injection and the additional flow losses caused by the jet. Compared to other actuator configurations, the segment synthetic jet with three sections can more effectively deflect the end-wall cross flow and thus impede the development of corner vortex, which helps to restrain the accumulation of low momentum fluid towards the corner, emphasizing the importance of slot arrangement. Accordingly, under the optimum condition, the total pressure loss coefficient gains a 15.8% reductions and the static pressure rise coefficient is increased by 5.01%.


2009 ◽  
Vol 52 (6) ◽  
pp. 1471-1477 ◽  
Author(s):  
ChunQing Tan ◽  
HuaLiang Zhang ◽  
HaiSheng Chen ◽  
XueZhi Dong ◽  
HongLei Zhao ◽  
...  

Author(s):  
M. Tadjfar ◽  
D. J. Kamari

Abstract The effects of applying a coupled unsteady blowing and suction combination over SD7003 airfoil at Reynolds number of 60,000 at an angle of attack of 13°, where a large separation on the suction side of the airfoil existed, was considered to investigate active flow control (AFC) mechanism. URANS equations were employed to solve the flow field and k–ω SST was used as the turbulence model. The unsteady blowing and suction were implemented at an angle to the surface crossing the boundary layer (CBL). The influence of location and frequency of the blowing/suction jets were examined.


Sign in / Sign up

Export Citation Format

Share Document