scholarly journals Estimating body segment parameters from three-dimensional human body scans

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262296
Author(s):  
Pawel Kudzia ◽  
Erika Jackson ◽  
Genevieve Dumas

Body segment parameters are inputs for a range of applications. Participant-specific estimates of body segment parameters are desirable as this requires fewer prior assumptions and can reduce outcome measurement errors. Commonly used methods for estimating participant-specific body segment parameters are either expensive and out of reach (medical imaging), have many underlying assumptions (geometrical modelling) or are based on a specific subset of a population (regression models). Our objective was to develop a participant-specific 3D scanning and body segmentation method that estimates body segment parameters without any assumptions about the geometry of the body, ethnic background, and gender, is low-cost, fast, and can be readily available. Using a Microsoft Kinect Version 2 camera, we developed a 3D surface scanning protocol that enabled the estimation of participant-specific body segment parameters. To evaluate our system, we performed repeated 3D scans of 21 healthy participants (10 male, 11 female). We used open source tools to segment each body scan into 16 segments (head, torso, abdomen, pelvis, left and right hand, forearm, upper arm, foot, shank and thigh) and wrote custom software to estimate each segment’s mass, mass moment of inertia in the three principal orthogonal axes relevant to the center of the segment, longitudinal length, and center of mass. We compared our body segment parameter estimates to those obtained using two comparison methods and found that our system was consistent in estimating total body volume between repeated scans (male p = 0.1194, female p = 0.2240), estimated total body mass without significant differences when compared to our comparison method and a medical scale (male p = 0.8529, female p = 0.6339), and generated consistent and comparable estimates across a range of the body segment parameters of interest. Our work here outlines and provides the code for an inexpensive 3D surface scanning method for estimating a range of participant-specific body segment parameters.

2021 ◽  
Author(s):  
Pawel Kudzia ◽  
Erika A. Jackson ◽  
Genevieve A. Dumas

Body segment parameters are inputs for a range of applications. The estimation of body segment parameters that are participant-specific is desirable as it requires fewer prior assumptions and can reduce outcome measurement errors. Commonly used methods for estimating participant-specific body segment parameters are either expensive and out of reach (medical imaging), have many underlying assumptions (geometrical modelling) or are based on a specific subset of a population (regression models). Our objective was to develop a participant-specific 3D scanning and body segmentation method that estimates body segment parameters without any assumptions about the geometry of the body, ethnic background, and gender, is low-cost, fast, and can be readily available. Using a Microsoft Kinect camera, we developed a 3D surface scanning protocol that estimated participant-specific body segment parameters. To evaluate our system, we performed repeated 3D scans of 21 healthy participants (10 male, 11 female). We used open-source software to segment each body scan into 16 segments (head, torso, abdomen, pelvis, left and right hand, forearm, upper arm, foot, shank and thigh) and wrote custom software to estimate each segment's mass, mass moment of inertia in the three principal orthogonal axes relevant to the center of the segment, longitudinal length, and center of mass. We compared our body segment parameter estimates to those obtained using two comparison methods and found that our system was consistent in estimating total body volume between repeated scans (male p=0.1194, female p = 0.2240), estimated total body mass without significant differences when compared to our comparison method and a medical scale (male p=0.8529, female p = 0.6339), and generated consistent and comparable estimates across all of the body segment parameters of interest. The work here outlines an inexpensive 3D surface scanning approach for estimating a range of participant-specific body segment parameters.


2017 ◽  
Vol 51 (5) ◽  
pp. 94-102
Author(s):  
Myoung-Jae Jun ◽  
Chang-Soo Han

Abstract We propose a novel propulsion mechanism for an underwater robot inspired by the pectoral fins of a fish. This device is referred to as the “flipper.” The flipper is connected to a rotational motor, and its shape is similar to that of the real fish's fins. The flipper using the propulsion mechanism proposed in this study has 1 degree of freedom. We can control the test robot during forward motion as well as its direction-changing operation. The experimental test robot is composed of a flipper at the front of the robot's head, together with a body and a tail/vertical fin. The electronic components are installed into the body. The tail functions to maintain the horizontal/vertical balance of the robot. Forward propulsion is achieved through the rotation of the flipper. The robot's direction can be changed by repeated oscillation of the flipper in a direction opposite to that of the desired angle. Several experiments were performed to measure the thrust force of the experimental robot and its motion characteristics in a test water pool. The experimental results show that the proposed propulsion method is viable.<def-list> Nomenclature <def-item> <term> F T </term> <def> = Thrust </def> </def-item> <def-item> <term> F I </term> <def> = Inertia force </def> </def-item> <def-item> <term> F B </term> <def> = Buoyancy </def> </def-item> <def-item> <term> B V </term> <def> = Platform volume </def> </def-item> <def-item> <term> V target </term> <def> = Target speed </def> </def-item> <def-item> <term> ρ </term> <def> = Water density </def> </def-item> <def-item> <term> P </term> <def> = Flipper pitch </def> </def-item> <def-item> <term> D </term> <def> = Drag force </def> </def-item> <def-item> <term> C D </term> <def> = Drag coefficient </def> </def-item> <def-item> <term> A </term> <def> = Projection of the frontal area </def> </def-item> <def-item> <term> T </term> <def> = Effective power </def> </def-item> <def-item> <term> P m </term> <def> = Propeller power </def> </def-item> <def-item> <term> C M </term> <def> = Center of total body mass </def> </def-item> <def-item> <term> C B </term> <def> = Center of buoyancy </def> </def-item> <def-item> <term> C F </term> <def> = Center of flipper mass </def> </def-item> <def-item> <term> F DS </term> <def> = Restoring force </def> </def-item> <def-item> <term> g </term> <def> = Gravity </def> </def-item> <def-item> <term> Q </term> <def> = Motor torque at maximum revolutions per minute </def> </def-item> <def-item> <term> rps reasonable </term> <def> = Reasonable revolutions per second </def> </def-item> </def-list>


1993 ◽  
Vol 71 (4) ◽  
pp. 828-834 ◽  
Author(s):  
Daniel Robineau ◽  
Vivian de Buffrénil

The mass of dry and fat-free skeletons was measured in a small sample representing five species of large cetaceans: two balaenids, two balaenopterids, and one physeterid (the sperm whale). Expressed as a percentage of total body mass, skeletal mass in these animals varies from 3.5 to 5%. Such values are very close to those established previously for small to medium size toothed whales. This means that the dynamics of mass growth of the skeleton, as compared with that of the body as a whole, does not follow a positive allometry in cetaceans. Such a growth pattern differs markedly from the tendencies described in terrestrial mammals. Conversely, it is similar to that described in bony fishes. The distribution of loads within the skeletons reflects rather different functional patterns among the taxa examined here. The possible adaptive significance of these differences is discussed in reference to the locomotion of large cetaceans.


Author(s):  
Kathrin E Peyer ◽  
Mark Morris ◽  
William I Sellers

Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. These quantities are, however, not directly measurable. Current approaches include using regression models which have limited accuracy; geometric models with lengthy measuring procedures; or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Joseph E. Langenderfer ◽  
Peter J. Laz ◽  
Anthony J. Petrella ◽  
Paul J. Rullkoetter

Inverse dynamics is a standard approach for estimating joint loadings in the lower extremity from kinematic and ground reaction data for use in clinical and research gait studies. Variability in estimating body segment parameters and uncertainty in defining anatomical landmarks have the potential to impact predicted joint loading. This study demonstrates the application of efficient probabilistic methods to quantify the effect of uncertainty in these parameters and landmarks on joint loading in an inverse-dynamics model, and identifies the relative importance of the parameters and landmarks to the predicted joint loading. The inverse-dynamics analysis used a benchmark data set of lower-extremity kinematics and ground reaction data during the stance phase of gait to predict the three-dimensional intersegmental forces and moments. The probabilistic analysis predicted the 1–99 percentile ranges of intersegmental forces and moments at the hip, knee, and ankle. Variabilities, in forces and moments of up to 56% and 156% of the mean values were predicted based on coefficients of variation less than 0.20 for the body segment parameters and standard deviations of 2mm for the anatomical landmarks. Sensitivity factors identified the important parameters for the specific joint and component directions. Anatomical landmarks affected moments to a larger extent than body segment parameters. Additionally, for forces, anatomical landmarks had a larger effect than body segment parameters, with the exception of segment masses, which were important to the proximal-distal joint forces. The probabilistic modeling approach predicted the range of possible joint loading, which has implications in gait studies, clinical assessments, and implant design evaluations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Theunis Piersma ◽  
Robert E. Gill ◽  
Daniel R. Ruthrauff

In a 1998 paper entitled “Guts don’t fly: small digestive organs in obese bar-tailed godwits,” Piersma and Gill (1998) showed that the digestive organs were tiny and the fat loads huge in individuals suspected of embarking on a non-stop flight from Alaska to New Zealand. It was suggested that prior to migratory departure, these godwits would shrink the digestive organs used during fuel deposition and boost the size and capacity of exercise organs to optimize flight performance. Here we document the verity of the proposed physiomorphic changes by comparing organ sizes and body composition of bar-tailed godwits Limosa lapponica baueri collected in modesty midway during their fueling period (mid-September; fueling, n = 7) with the previously published data for godwits that had just departed on their trans-Pacific flight (October 19; flying, n = 9). Mean total body masses for the two groups were nearly identical, but nearly half of the body mass of fueling godwits consisted of water, while fat constituted over half of total body mass of flying godwits. The two groups also differed in their fat-free mass components. The heart and flight muscles were heavier in fueling godwits, but these body components constituted a relatively greater fraction of the fat-free mass in flying godwits. In contrast, organs related to digestion and homeostasis were heavier in fueling godwits, and most of these organ groups were also relatively larger in fueling godwits compared to flying godwits. These results reflect the functional importance of organ and muscle groups related to energy acquisition in fueling godwits and the consequences of flight-related exertion in flying godwits. The extreme physiomorphic changes apparently occurred over a short time window (≤1 month). We conclude that the inferences made on the basis of the 1998 paper were correct. The cues and stimuli which moderate these changes remain to be studied.


Author(s):  
Alison L. Sheets ◽  
Stefano Corazza ◽  
Thomas Andriacchi

Recent studies have suggested that limb kinetics during swing or float phase movements are important for ACL injury analysis and injury prevention [1]. Kinetic (moment and force) calculations during swing phase can be sensitive to the accuracy of subject-specific body segment parameters (BSP) including mass and inertial properties. While numerous methods for estimating BSP have been implemented including regression equations [2,3], geometric body shape estimations, medical imaging and optimization approaches, they all have application specific limitations. Almost all of these BSP estimation approaches are limited by assumptions that: the mass center (CM) lies on the axis connecting the segment’s proximal and distal joint center, the body principle moments of inertia are aligned with the segment axes [4], and the right and left limbs are symmetric. These assumptions could introduce errors in 3D kinematic analysis. Non-invasive methods of measuring the exact geometry and volume of body segments have the potential to reduce most sources of error.


Author(s):  
Petros Pandis ◽  
Anthony MJ Bull

Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.


Author(s):  
Mohan Yende ◽  
Jayashree S Gohane ◽  
Thosar Sheetal Laxman

Padadari is one of the commonest & most negligible disease. It is observed that people are least bothered about their feet though feet bear the whole body weight. In India 80% of population live in rural area. Most of them work in farms in wet soil and water also. So incidence of cracking the skin of the foot is very common. For management of Padadari knowledge of skin is very important. The skin covers the entire external surface of the body, including the external auditory meatus, the lateral aspect of tympanic membrane and vestibule of the nose. Skin forms about 8% of the total body mass. It is one of the largest organs of the body in surface area and weight. In adult, the skin covers an area about 2 square meters and weighs 4.5-5 kg. Its thickness is 0.5-4mm, depending on location, maturation and ageing. All of Acharyas explain briefly about Twak Sharir , in this research article we try to focus on Twak Sharir. Key Words-  Padadari, Twaka, crack heel,


2012 ◽  
Vol 303 (9) ◽  
pp. F1315-F1324 ◽  
Author(s):  
Wai W. Cheung ◽  
Robert H. Mak

Aberrant melanocortin signaling has been implicated in the pathogenesis of wasting in chronic kidney disease (CKD). Previously, we demonstrated that agouti-related peptide (AgRP), a melenocortin-4 receptor antagonist, reduced CKD-associated cachexia in CKD mice. Our previous studies with AgRP utilized dual energy X-ray (DXA) densitometry to assess the body composition in mice (Cheung W, Kuo HJ, Markison S, Chen C, Foster AC, Marks DL, Mak RH. J Am Soc Nephrol 18: 2517–2524, 2007; Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. J Clin Invest 115: 1659–1665, 2005). DXA is unable to differentiate water content in mice, and fluid retention in CKD may lead to an overestimate of lean mass. In this study, we employed quantitative magnetic resonance technique to evaluate body composition change following central administration of AgRP in a CKD mouse model. AgRP treatment improved energy expenditure, total body mass, fat mass, and lean body mass in CKD mouse. We also investigated the effect of CKD-associated cachexia on the signaling pathways leading to wasting in skeletal muscle, as well as whether these changes can be ameliorated by central administration of AgRP. AgRP treatment caused an overall decrease in proinflammatory cytokines, which may be one important mechanism of its effects. Muscle wasting in CKD may be due to the activation of proteolytic pathways as well as inhibition of myogenesis and muscle regeneration processes. Our results suggest that these aberrant pathological pathways leading to muscle wasting in CKD mice were ameliorated by central administration of AgRP.


Sign in / Sign up

Export Citation Format

Share Document