scholarly journals Anti-HCMV Activity of Cidofovir in Combination with Antiviral Compounds and Immunosuppressive Agents: In-Vitro Analyses

1996 ◽  
Vol 7 (4) ◽  
pp. 203-208 ◽  
Author(s):  
A. S. Mulato ◽  
J. M. Cherrington ◽  
M. S. Chen

Cidofovir 1-[(S)-3-hydroxy-2-(phosphonomethoxy) propyl] cytosine, HPMPC] is an acyclic cytosine nucleotide analogue with potent in-vitro and in-vivo activity against a broad spectrum of herpesviruses including human cytomegalovirus (HCMV). Cidofovir has recently been shown to delay the progression of HCMV retinitis in AIDS patients. Therefore, the effects of several antiviral compounds (GCV, AZT, ddC., ddl, d4T, 3TC and PMEA) on the anti-HCMV activity of cidofovir were investigated in vitro. Cidofovir in combination with GCV demonstrated synergistic inhibition of HCMV replication. Very little significant antiviral synergy or antagonism was measured for any of the other combinations. Furthermore, none of the combinations showed increased cytotoxicity in comparison with each drug alone. Additionally, the antiviral activity of cidofovir was determined in the presence of several immunosuppressive agents (hydrocortisone, cyclosporine A, methotrexate and mycophenolic acid) that are commonly used in the management of organ transplantation rejection in transplant patients. None of these agents altered the antiviral activity of cidofovir in vitro.

2002 ◽  
Vol 46 (6) ◽  
pp. 1766-1772 ◽  
Author(s):  
Ulrich A. K. Betz ◽  
Rüdiger Fischer ◽  
Gerald Kleymann ◽  
Martin Hendrix ◽  
Helga Rübsamen-Waigmann

ABSTRACT BAY 57-1293 belongs to a new class of antiviral compounds and inhibits replication of herpes simplex virus (HSV) type 1 and type 2 in the nanomolar range in vitro by abrogating the enzymatic activity of the viral primase-helicase complex. In various rodent models of HSV infection the antiviral activity of BAY 57-1293 in vivo was found to be superior compared to all compounds currently used to treat HSV infections. The compound shows profound antiviral activity in murine and rat lethal challenge models of disseminated herpes, in a murine zosteriform spread model of cutaneous disease, and in a murine ocular herpes model. It is active in parenteral, oral, and topical formulations. BAY 57-1293 continued to demonstrate efficacy when the onset of treatment was initiated after symptoms of herpetic disease were already apparent.


2021 ◽  
Vol 11 (4) ◽  
pp. 521-533
Author(s):  
Gamil Sayed Gamil Zeedan ◽  
Abeer Mostafa Abdalhamed

The goal of this review was to highlight some plant species that have significant antiviral activity against DNA and RNA viruses in vitro and in vivo although more research is needed to address safety issues, drug interactions, and the possibility of using them in combination with other natural products. Viral infection plays an important role in human and animal diseases. Although there have been advances in immunization and antiviral drugs, there is still a lack of protective vaccines and effective antiviral drugs in human and veterinary medicine. The lack of effective antivirals necessitates the search for new effective antiviral compounds. Plants are naturally gifted at synthesizing antiviral compounds. They are rich sources of phytochemicals with different biological activities, including antiviral activities as a result of advanced analytical chemistry, standard virus assays, and development of standardization and extraction methods. Plant extracts have a wide variety of active compounds, including flavonoids, terpenoids, lignans, sulphides, polyphenolics, coumarins, saponins, furyl compounds, alkaloids, polyines, thiophenes, proteins, and peptides. Moreover, certain volatile oils have indicated a high level of antiviral activity. Replication, assembly, and release, as well as targeting virus host-specific interactions capable of inhibiting several viruses, could help the development of broad-spectrum antivirals for the prevention and control of viral pathogens. The in vitro antiviral activities of Erythroxylum deciduum, Lacistema hasslerianum (chodat), Xylopia aromatica, Heteropteris aphrodisiaca, Acacia nilotica (gum arabic tree), Lippia graveolens (Guettarda angelica (Velvetseed), Prunus myrtifolia, and Symphyopappus plant extracts can inhibite viral replication, and interfer with the early stages of viral adsorption of DNA viruses. However, Boesenbergia rotunda plant extracts have inhibited RNA viruses. A potent anti-SARS-CoV-2 inhibitor with B. rotunda extract and panduratin A after viral infection drastically suppresses SARS-CoV-2 infectivity in Vero E6 cells.


Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 496
Author(s):  
Daniel Enosi Tuipulotu ◽  
Tulio M. Fumian ◽  
Natalie E. Netzler ◽  
Jason M. Mackenzie ◽  
Peter A. White

The widespread nature of calicivirus infections globally has a substantial impact on the health and well-being of humans and animals alike. Currently, the only vaccines approved against caliciviruses are for feline and rabbit-specific members of this group, and thus there is a growing effort towards the development of broad-spectrum antivirals for calicivirus infections. In this study, we evaluated the antiviral activity of the adenosine analogue NITD008 in vitro using three calicivirus model systems namely; feline calicivirus (FCV), murine norovirus (MNV), and the human norovirus replicon. We show that the nucleoside analogue (NA), NITD008, has limited toxicity and inhibits calicivirus replication in all three model systems with EC50 values of 0.94 μM, 0.91 µM, and 0.21 µM for MNV, FCV, and the Norwalk replicon, respectively. NITD008 has a similar level of potency to the most well-studied NA 2′-C-methylcytidine in vitro. Significantly, we also show that continual NITD008 treatment effectively cleared the Norwalk replicon from cells and treatment with 5 µM NITD008 was sufficient to completely prevent rebound. Given the potency displayed by NITD008 against several caliciviruses, we propose that this compound should be interrogated further to assess its effectiveness in vivo. In summary, we have added a potent NA to the current suite of antiviral compounds and provide a NA scaffold that could be further modified for therapeutic use against calicivirus infections.


2021 ◽  
pp. 174204
Author(s):  
Yiming Cao ◽  
En Lei ◽  
Lei Li ◽  
Jin Ren ◽  
Xiaoyang He ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 294
Author(s):  
Eric G. Romanowski ◽  
Islam T. M. Hussein ◽  
Steven C. Cardinale ◽  
Michelle M. Butler ◽  
Lucas R. Morin ◽  
...  

Presently, there is no FDA- or EMA-approved antiviral for the treatment of human adenovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV) against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5. On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d; (2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, compared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus activity in vitro and in vivo.


2004 ◽  
Vol 11 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Guénolée Prioult ◽  
Sophie Pecquet ◽  
Ismail Fliss

ABSTRACT We have previously demonstrated that Lactobacillus paracasei NCC2461 may help to prevent cow's milk allergy in mice by inducing oral tolerance to β-lactoglobulin (BLG). To investigate the mechanisms involved in this beneficial effect, we examined the possibility that L. paracasei induces tolerance by hydrolyzing BLG-derived peptides and liberating peptides that stimulate interleukin-10 (IL-10) production. L. paracasei peptidases have been shown to hydrolyze tryptic-chymotryptic peptides from BLG, releasing numerous small peptides with immunomodulating properties. We have now shown that acidic tryptic-chymotryptic peptides stimulate splenocyte proliferation and gamma interferon (IFN-γ) production in vitro. Hydrolysis of these peptides with L. paracasei peptidases repressed the lymphocyte stimulation, up-regulated IL-10 production, and down-regulated IFN-γ and IL-4 secretion. L. paracasei NCC2461 may therefore induce oral tolerance to BLG in vivo by degrading acidic peptides and releasing immunomodulatory peptides stimulating regulatory T cells, which function as major immunosuppressive agents by secreting IL-10.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


1998 ◽  
Vol 38 (2) ◽  
pp. 131-140 ◽  
Author(s):  
M.A Surzhik ◽  
L.M Vilner ◽  
A.L Katchurin ◽  
A.L Timkovskii
Keyword(s):  

2009 ◽  
Vol 154 (4) ◽  
pp. 601-607 ◽  
Author(s):  
Qiong Zhong ◽  
Zhanqiu Yang ◽  
Yuanyuan Liu ◽  
Haiying Deng ◽  
Hong Xiao ◽  
...  

2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


Sign in / Sign up

Export Citation Format

Share Document