scholarly journals Stimulation of Interleukin-10 Production by Acidic β-Lactoglobulin-Derived Peptides Hydrolyzed with Lactobacillus paracasei NCC2461 Peptidases

2004 ◽  
Vol 11 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Guénolée Prioult ◽  
Sophie Pecquet ◽  
Ismail Fliss

ABSTRACT We have previously demonstrated that Lactobacillus paracasei NCC2461 may help to prevent cow's milk allergy in mice by inducing oral tolerance to β-lactoglobulin (BLG). To investigate the mechanisms involved in this beneficial effect, we examined the possibility that L. paracasei induces tolerance by hydrolyzing BLG-derived peptides and liberating peptides that stimulate interleukin-10 (IL-10) production. L. paracasei peptidases have been shown to hydrolyze tryptic-chymotryptic peptides from BLG, releasing numerous small peptides with immunomodulating properties. We have now shown that acidic tryptic-chymotryptic peptides stimulate splenocyte proliferation and gamma interferon (IFN-γ) production in vitro. Hydrolysis of these peptides with L. paracasei peptidases repressed the lymphocyte stimulation, up-regulated IL-10 production, and down-regulated IFN-γ and IL-4 secretion. L. paracasei NCC2461 may therefore induce oral tolerance to BLG in vivo by degrading acidic peptides and releasing immunomodulatory peptides stimulating regulatory T cells, which function as major immunosuppressive agents by secreting IL-10.

2001 ◽  
Vol 69 (12) ◽  
pp. 7453-7460 ◽  
Author(s):  
M. M. L. Pompeu ◽  
C. Brodskyn ◽  
M. J. Teixeira ◽  
J. Clarêncio ◽  
J. Van Weyenberg ◽  
...  

ABSTRACT The initial encounter of Leishmania cells and cells from the immune system is fundamentally important in the outcome of infection and determines disease development or resistance. We evaluated the anti-Leishmania amazonensis response of naive volunteers by using an in vitro priming (IVP) system and comparing the responses following in vivo vaccination against the same parasite. In vitro stimulation allowed us to distinguish two groups of individuals, those who produced small amounts of gamma interferon (IFN-γ) (n = 16) (low producers) and those who produced large amounts of this cytokine (n = 16) (high producers). IFN-γ production was proportional to tumor necrosis factor alpha and interleukin 10 (IL-10) levels but did not correlate with IL-5 production. Volunteers who produced small amounts of IFN-γ in vitro remained low producers 40 days after vaccination, whereas high producers exhibited increased IFN-γ production. However, 6 months after vaccination, all individuals tested produced similarly high levels of IFN-γ upon stimulation of their peripheral blood mononuclear cells with Leishmania promastigotes, indicating that low in vitro producers respond slowly in vivo to vaccination. In high IFN-γ producers there was an increased frequency of activated CD8+ T cells both in vitro and in vivo compared to the frequency in low producers, and such cells were positive for IFN-γ as determined by intracellular staining. Such findings suggest that IVP responses can be used to predict the pace of postvaccination responses of test volunteers. Although all vaccinated individuals eventually have a potent anti-Leishmania cell-mediated immunity (CMI) response, a delay in mounting the CMI response may influence resistance against leishmaniasis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 809-809
Author(s):  
Musga Qureischi ◽  
Lena Dietz ◽  
Martin Vaeth ◽  
Andreas Beilhack ◽  
Friederike Berberich-Siebelt

Abstract Allogenic hematopoietic cell transplantation (allo-HCT) is an established therapy for the treatment of malignant diseases such as leukemia or lymphoma. Unfortunately, this often leads to an immunological complication, termed graft-versus-host disease (GvHD), in which donor T cells attack host tissues. Patients with acute GvHD can be efficiently treated with immunosuppressive agents such as cyclosporin A and tacrolimus. These agents inhibit the phosphatase calcineurin, which leads to suppression of nuclear factor of activated T-cells (NFAT). However, inhibition of calcineurin causes severe side effects and impairs the graft-versus-leukemia (GvL) effect. Therefore, we evaluate new therapeutic options. Previously, we have demonstrated that posttranslational modification of NFATc1 by SUMO (Small Ubiquitin-like MOdifier) modulates its transcriptional activity in vitro (Nayak et al. 2009. J Biol Chem 284:10935-46). To elucidate the importance of NFATc1 SUMOylation in vivo, we generated an NFAT mutant mouse with lysine to arginine exchanges within the C-terminal SUMOylation motifs, Nfatc1K702/914R, encoding NFATc1ΔSumo. NFATc1ΔSumo mice were healthy and developed a normal lymphoid compartment. In line with our former in vitro studies, however, NFATc1ΔSumo CD4+ T cells produced more IL-2 and less effector lymphokines like IFN-γ when challenged ex vivo. Since enhanced IL-2 levels can protect from GvHD, we compared NFATc1ΔSumovs WT T cells in an murine MHC major mismatch allo-HSCT model (C57BL/6, H-2b into BALB/c, H-2d), leading to acute GvHD. For noninvasive bioluminescence imaging of transplanted T cells, we crossed NFATc1ΔSumo mice with firefly luciferase-expressing mice. Recipients of NFATc1ΔSumo T cells survived much longer than WT T-cell recipients, correlating with a significant reduction of in vivo expansion and GvHD target organ infiltration. Surface expression of α4β7-integrin, which guides T cells into the intestine, was slightly decreased on CD4+ T cells of NFATc1ΔSumo mice. Accordingly, immunofluorescence microscopy revealed reduced NFATc1 SUMOylation-deficient CD4+ T cells infiltrating the gastrointestinal tract. Importantly, intracellular TNF-α and IFN-γ levels were significantly decreased in alloreactive NFATc1ΔSumoT cells. In contrast, CD4+ CD25+ Foxp3+ regulatory T (Treg) cells increased in mice with transplanted NFATc1ΔSumo T cells. To evaluate whether higher IL-2 production from conventional T cells (Tcons) would enhance Treg frequency, we transplanted NFATc1ΔSumo or WT Tcons, always in combination with WT Tregs to suppress GvHD in vivo. Indeed, WT Tregs frequencies were 2-fold higher in the presence of Tcons from NFATc1ΔSumo mice as compared to WT Tcons. Consequently, expansion of NFATc1ΔSumo alloreactive Tcons was inhibited. Accordingly, an in vitro suppression assay demonstrated that NFATc1ΔSumo regulatory T cells (Tregs) exhibit similar suppressive capacities as WT Tregs and, thus, may mainly benefit from the beneficial condition provided by NFAT1ΔSumoTcons. Conclusively, NFATc1 SUMOylation in T cells is critical for balancing inflammation and tolerance by regulating the ratio of Tcons vs Tregs. We postulate that averted NFATc1 SUMOylation ameliorates inflammatory diseases due to higher IL-2 production, which supports Treg proliferation. Blocking NFATc1 SUMOylation in T cells before allo-HSCT poses a potential therapeutic option similar to IL-2 treatment against GvHD. Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 71 (7) ◽  
pp. 3802-3811 ◽  
Author(s):  
Hiroyuki Tezuka ◽  
Shinjiro Imai ◽  
Shinya Hidano ◽  
Setsuko Tsukidate ◽  
Koichiro Fujita

ABSTRACT Dirofilaria immitis polyproteins (DiAgs) are found as 15-kDa monomeric and 30-kDa dimeric forms in exceretory-secretory products of the adult worm. We evaluated the ability of various types of recombinant DiAg (rDiAg; V1 and V2 as monomers and V1V2, V2V1, V1V1, and V2V2 as dimers) to influence Th1/Th2 immune responses. V1-, V1Vx- and V2-, V2Vx-driven nonspecific immunoglobulin E (IgE) production peaked at 21 and 14 days after administration, respectively. Dimer-induced IgE response was an interesting biphasic pattern with the second peaks on days 35 (V2Vx) or 42 (V1Vx). Absolute amounts of nonspecific IgE production induced with monomers were larger than those observed with dimers at the first peak. The magnitude of cell expansion and interleukin-10 (IL-10) production in mesenteric lymph node (MLN) B-cell induced with rDiAgs was linked to the levels of the first IgE peak in vivo and IgE produced by rDiAg plus IL-4-stimulated B cells in vitro. All rDiAgs failed to augment IgG2c production. V2 and V2Vx elicited IL-4 production by MLN cells more rapidly than V1 and V1Vx. The inhibitory effect of rDiAg on gamma interferon (IFN-γ) production was stronger in monomers than in dimers. Neutralization of IL-10 restored IFN-γ production, whereas the expression of IL-4 and IgE was partly prevented by depletion of IL-10. These results indicate that monomer rather than dimer is an efficient form of DiAg and suggest that the difference of IgE-inducing capacity among these DiAgs is closely associated with the pattern of both B-cell activation and IL-4 production.


2005 ◽  
Vol 73 (6) ◽  
pp. 3531-3539 ◽  
Author(s):  
Zhong Su ◽  
Mariela Segura ◽  
Kenneth Morgan ◽  
J. Concepcion Loredo-Osti ◽  
Mary M. Stevenson

ABSTRACT Helminthiases, which are highly prevalent in areas where malaria is endemic, have been shown to modulate or suppress the immune response to unrelated antigens or pathogens. In this study, we established a murine model of coinfection with a gastrointestinal nematode parasite, Heligmosomoides polygyrus, and the blood-stage malaria parasite Plasmodium chabaudi AS in order to investigate the modulation of antimalarial immunity by concurrent nematode infection. Chronic infection with the nematode for 2, 3, or 5 weeks before P. chabaudi AS infection severely impaired the ability of C57BL/6 mice to control malaria, as demonstrated by severe mortality and significantly increased malaria peak parasitemia levels. Coinfected mice produced significantly lower levels of gamma interferon (IFN-γ) during P. chabaudi AS infection than mice infected with malaria alone. Concurrent nematode infection also suppressed production of type 1-associated, malaria-specific immunoglobulin G2a. Mice either infected with the nematode alone or coinfected with the nematode and malaria had high transforming growth factor β1 (TGF-β1) levels, and concurrent nematode and malaria infections resulted in high levels of interleukin-10 in vivo. Splenic CD11c+ dendritic cells (DC) from mice infected with malaria alone and coinfected mice showed similarly increased expression of CD40, CD80, and CD86, but DC from coinfected mice were unable to induce CD4+ T-cell proliferation and optimal IFN-γ production in response to the malaria antigen in vitro. Importantly, treatment of nematode-infected mice with an anthelmintic drug prior to malaria infection fully restored protective antimalarial immunity and reduced TGF-β1 levels. These results demonstrate that concurrent nematode infection strongly modulates multiple aspects of immunity to blood-stage malaria and consequently impairs the development of protective antimalarial immunity.


1997 ◽  
Vol 185 (6) ◽  
pp. 1089-1100 ◽  
Author(s):  
Gabriele Grünig ◽  
David B. Corry ◽  
Michael W. Leach ◽  
Brian W.P. Seymour ◽  
Viswanath P. Kurup ◽  
...  

We have used interleukin-10 (IL-10) gene knockout mice (IL-10−/−) to examine the role of endogenous IL-10 in allergic lung responses to Aspergillus fumigatus Ag. In vitro restimulated lung cells from sensitized IL-10−/− mice produced exaggerated amounts of IL-4, IL-5, and interferon-γ (IFN-γ) compared with wild-type (WT) lung cells. In vivo, the significance of IL-10 in regulating responses to repeated A. fumigatus inhalation was strikingly revealed in IL-10−/− outbred mice that had a 50–60% mortality rate, while mortality was rare in similarly treated WT mice. Furthermore, IL-10−/− outbred mice exhibited exaggerated airway inflammation and heightened levels of IL-5 and IFN-γ in bronchoalveolar lavage (BAL) fluids. In contrast, the magnitude of the allergic lung response was similar in intranasally (i.n.) sensitized IL-10−/− and wild-type mice from a different strain (C57BL/6). Using a different route of priming (intraperitoneal) followed by one i.n. challenge we found that IL-10−/− C57BL/6 mice had heightened eosinophilic airway inflammation, BAL–IL-5 levels, and numbers of αβT cells in the lung tissues compared with WT mice. We conclude that IL-10 can suppress inflammatory Th2-like lung responses as well as Th1-like responses given the constraints of genetic background and route of priming.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 238
Author(s):  
Sung-Joon Mo ◽  
Bora Nam ◽  
Chu-Hyun Bae ◽  
Soo-Dong Park ◽  
Jae-Jung Shim ◽  
...  

Red ginseng has powerful potential for use as a prebiotic, but its use is limited due to its antibacterial activity. The aim of this study is to present panax ginseng’s endophytic lactic acid bacteria capable to overcome the antibacterial activity of red ginseng and improve their characteristic. Lactobacillus paracasei HY7017 (HY7017) was cultured in a medium supplemented with red ginseng. The probiotic properties and immune-enhancing effects of HY7017 were investigated in vitro and in vivo. HY7017 was proliferated strongly in RGE and had significantly improved properties compared with an L. paracasei type strain ATCC25302. HY7017 cultured in RGE-supplemented medium increased the production of nitric oxide, TNF-α, and IL-6 in macrophages, and increased IL-12 and IFN-γ secretion in splenocytes. Furthermore, HY7017 restored WBC counts, increased the amount of IL-2 and IFN-γ released, and enhanced the cytotoxicity of natural killer cells when orally administered to immunosuppressed mice. Moreover, HY7017 has properties that make it suitable as a probiotic, such as stability in the gastrointestinal tract and adhesion to Caco-2 cells. This study showed that HY7017 cultured with RGE may contribute to the development of probiotics to enhance immunity.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer K. Dowling ◽  
Remsha Afzal ◽  
Linden J. Gearing ◽  
Mariana P. Cervantes-Silva ◽  
Stephanie Annett ◽  
...  

AbstractMitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2−/− mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document