The effect of crack geometry on non-destructive fault detection of EN 8 and EN 47 cracked cantilever beam

2019 ◽  
Vol 50 (3) ◽  
pp. 92-100 ◽  
Author(s):  
V Khalkar ◽  
S Ramachandran

Since long it has been observed that the size of the crack in structures increases with time, and finally, it may lead to its catastrophic failure. Hence, it is crucial to do the vibration study of cracked structures with regard to vibration-based crack detection and the classification of cracks. So far, vibration-based non-destructive testing method is applied to many spring steel cracked cantilever beams for its possible crack detection. However, the effect of various kinds of practical cracks, that is, V-shaped and U-shaped, on the applicability of these methods has been overlooked. To investigate this issue, artificially cracks are made on the cantilever beam. By free vibration analysis, the effect of crack geometry, crack depth, and crack location on natural frequency is investigated. The natural frequency results obtained from V-shaped and U-shaped models for the same crack configurations are compared with each other and it is revealed that the results are not much sensitive for the change of crack geometry. Hence, it is clear that free vibration-based crack detection method approximately predicts the crack parameters, that is, crack location and crack depth, in structures irrespective of the crack geometry. It is also found that for the same configuration, results of natural frequency are comparatively on the lower side for U-shaped crack models than V-shaped crack models. In this study, the natural frequency of each cracked case is computed by a theoretical method and numerical method and shows good agreement. Finally, it is also observed that structural integrity of a cracked cantilever beam is a function of crack location.

2018 ◽  
Vol 37 (4) ◽  
pp. 762-773 ◽  
Author(s):  
V Khalkar ◽  
S Ramachandran

The survival of the crack in structures always keeps the structure away from performing well in applications due to significant changes in its dynamic response. It has been observed that in service the size of the crack in structures increases with time and finally it leads to its catastrophic failure. Hence it is crucial to do the vibration study of cracked beams in regard of free vibration-based crack detection and its crack classification. Until now the vibration-based nondestructive testing methods are applied to many spring steel cracked cantilever beams for its possible crack detection. However, the effect of various kinds of practical cracks, i.e. V-shaped, U-shaped and rectangular-shaped open cracks, on the applicability of these methods has been overlooked. In order to investigate this issue, artificially cracks are made on the cantilever beam. By free vibration analysis, the effect of crack geometry, crack depth, and crack location on the beam stiffness is investigated. In this study, the stiffness of each cracked case is computed by the deflection methods and vibration methods to ensure the strong validation. The stiffness results obtained from V-shaped, U-shaped and rectangular-shaped crack models for the same configuration are compared with each other and it is found that the results of the stiffness are comparatively more sensitive to U-shaped crack models. Through vibration study, it is found that spring steel structures are slightly sensitive to the change in crack geometries as long as the vibration characteristics are concerned. Hence, it is obvious that free vibration-based crack detection method can satisfactorily predict the location and depth of the crack in any spring steel structures irrespective of the crack geometries. Apart from this, it is also found that for the same configurations, EN 8 and EN 47 cracked cantilever beams give the identical structural integrity or structural stability property for all the cracked cases. Lastly, it is also found that as the crack depth increases by keeping the crack location constant, the stiffness of the beam decreases.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


1996 ◽  
Vol 118 (1) ◽  
pp. 71-78 ◽  
Author(s):  
D. I. Nwosu ◽  
A. S. J. Swamidas ◽  
J. Y. Guigne´

This paper presents an analytical study on the vibration response of tubular T-joints for detecting the existence of cracks along their intersections. The ABAQUS finite element program was utilized for carrying out the analysis. Frequency response functions were obtained for a joint with and without cracks. The joint was modeled with 8-node degenerate shell elements having 5 degrees of freedom per node. Line spring elements were used to model the crack. The exact crack configuration (semielliptical shape, Fig. 5(b)), as observed from numerous experimental fatigue crack investigations at the critical location, has been achieved through a mapping function, that allows a crack in a planar element to be mapped on to the tube surface. The natural frequency changes with respect to crack depth show little changes, being 4.82 percent for a 83-percent crack depth for the first mode. On the other hand, significant changes have been observed for bending moment and curvature as a function of crack depth. For an 83-percent chord thickness crack, a 97-percent change in bending moment at points around the crack vicinity, and 34.15 to 78 percent change in bending moments, for those locations far away from the crack location, have been observed. Natural frequency change should be combined with other modal parameters such as “bending moment (or bending strain)” and “curvature” changes for crack detection. The presence of the crack can be detected at locations far away from the crack location using such sensors as strain gages.


2020 ◽  
Vol 38 (12A) ◽  
pp. 1808-1817
Author(s):  
Marwah A. Husain ◽  
Mohsin A. Al-shammari

Shell structures are liable to different kinds of defects and damage like cracking and corrosion which may destroy their structural safety and affect the service life. The cracks' effects are significant considerations in the design of cylindrical shell structures as they influence the vibration characteristics and safety. This present work is an experimental study on the free vibration analysis of a cylindrical shell involving circumferential surface crack. The influence of the ratio of shell’s radius to a shell’s thickness (R/h)of the shell structure, crack length in the shell, crack depth in the shell, crack location of the shell, and crack orientation in the shell are investigated under a clamped - clamped and simply supported boundary conditions at each end in the shell. Results showed that the minimum impact of the crack is at the angle of crack 75, and the circumferential fissure has more effect than a longitudinal fissure, In addition to this, under SS-SS, C-C the natural frequency will decrease if the fissure is located in the middle of the shell is greater than other locations. but when crack animated across in the ends of the limits the decrease in the natural frequency under C-C only. Results were compared with the literature there was a close agreement.


2012 ◽  
Vol 21 (1) ◽  
pp. 096369351202100 ◽  
Author(s):  
Turan Ercopur ◽  
Binnur Goren Kiral

This paper deals with the finite element analysis of free vibration response of the delaminated composite plates. Free vibration analysis is performed by using ANSYS commercial software developing parametric input files. Natural frequency values and associated mode shapes of E-glass/epoxy composite delaminated plates are determined. Effects of delamination shape, dimension and location on the natural frequency and associated mode shapes are investigated and for the purpose of the observing the effect of the boundary conditions, cantilever and clamped-pinned delaminated composite plates are taken into consideration. Comparisons with the results in literature verify the validity of the developed models in this study. It is observed that the natural frequency decreases in the existence of the delamination and level of the decrease depends on the dimension, shape and location of the delamination.


2001 ◽  
Vol 15 (3) ◽  
pp. 529-548 ◽  
Author(s):  
FRANÇOIS LÉONARD ◽  
JACQUES LANTEIGNE ◽  
SERGE LALONDE ◽  
YVON TURCOTTE

1998 ◽  
Vol 120 (2) ◽  
pp. 551-556 ◽  
Author(s):  
Ming-Chuan Wu ◽  
Shyh-Chin Huang

Dynamic response and stability of a rotating shaft-disk containing a transverse crack is investigated. FFT analysis of response amplitudes showed that the 2Ω component (Ω: rotation speed) was excited by crack breathing and could serve as a good index for crack identification. Intensive numerical studies of crack location, crack depth, rotation speed, and sensing position on response amplitudes displayed a feasible technique for the identification of crack depth and crack location. It is achieved by intersecting the two equi-amplitude response curves of two separated sensing probes. Finally, the instability of the system caused by a crack is examined via Floquet theory and the multiple scale method. The stability diagrams, illustrated as functions of crack depth, rotation speed, and damping, are shown and discussed.


1998 ◽  
Vol 120 (4) ◽  
pp. 775-777 ◽  
Author(s):  
A. S. Sekhar ◽  
P. Balaji Prasad

Identification of crack location and magnitude through measurement in changes in system characteristics, such as modal measurements, has been studied by various researchers. In the present work based on the new method proposed by Gounaris et al. (1996) for crack detection through coupled response measurements, experiments were carried out on a cracked cantilever beam for eigenfrequencies, bending, and axial response measurements. It has been observed that the rate of change of direct response (bending) is much less at small cracks, while that of the coupled response (axial) changes substantially, which allows for diagnoses of smaller cracks.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mahmoud Nadim Nahas ◽  
Mahmoud Ali Alzahrani

Cyclic loadings cause fatigue to the elements of machines leading to crack initiation and propagation. This phenomenon decreases the age of the elements. In particular, cracks decrease the stiffness of the parts and lower the parts natural frequency, leading to failure under normal working conditions. This paper introduces a new application to carbon nanotube (CNT) composites in the repairing process of a cracked specimen to restore the natural frequency of the specimen. Commonly, patches are made of high strength and high stiffness materials. This paper shows that even low stiffness materials, such as epoxy reinforced with CNT, can contribute to the repair of a cracked specimen. A 2D finite element (FE) simulation is used to study the effects of bonding CNT composite patches over the crack location to repair cracked metal specimens. The effects of the patch thickness, length, and CNTs weight concentration ratio are investigated. Results showed an increase in the natural frequency of 31% compared to the cracked specimen at a crack depth of 70% of the beam depth and at a distance of 20% of the total beam length from the support.


Sign in / Sign up

Export Citation Format

Share Document