scholarly journals Numerical investigation into the mechanism regarding the inception and evolution of flow unsteadiness induced by the tip leakage flow in a transonic compressor

Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Stephen Spence ◽  
Jinhua Lang ◽  
Zhiyang Chen ◽  
...  

Unsteady flow in the blade tip region of modern axial flow compressors is one of the sources of loss, noise, and blade vibration. In some cases, it is potentially linked to stall inception. In this paper, the complex flow fields in the blade tip region of a transonic axial flow compressor rotor have been numerically investigated. The predicted results were validated by experimental data. Analyses of monitoring results of numerical probes showed that three typical flow characteristics occurred as the operating condition approached the stability limit: no flow fluctuation at the first operating point; flow fluctuation with high frequency and low amplitude at the second operating point; flow fluctuation with low frequency and high amplitude at the third operating point. Further analysis of the tip flow field showed that the evolution of the tip leakage vortex experienced three stages as the rotor was throttled. At the first stage, the TLV did not breakdown. At the second stage, a bubble-type breakdown of the tip leakage vortex occurred. At the third stage, a spiral-type breakdown of tip leakage vortex occurred. The current study demonstrated that the flow unsteadiness that appears within the test rotor was induced by the tip leakage vortex breakdown. Furthermore, with the transformation of the vortex breakdown form, the characteristic frequency and amplitude of the flow oscillation substantially changed.

Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Jinhua Lang ◽  
Zhiyang Chen ◽  
Bo Wang ◽  
...  

It is well known that tip flow unsteadiness has profound effects on both performance and stability of axial compressors. A number of numerical simulations have been performed in transonic compressors to uncover the nature of tip flow unsteadiness. From this research, tip flow unsteadiness can be attributed to many factors, such as the movement of the primary and secondary leakage flow, the interaction between shock and vortex, and the tip leakage vortex breakdown. However, no final conclusion has yet been reached on this matter. The current investigation is carried out to explore the origin of tip flow unsteadiness from the perspective of the evolution and development of tip leakage vortex breakdown. In this paper, unsteady RANS simulations have been performed to investigate the fluid dynamic processes in a tip-critical transonic compressor, NASA Rotor 35. A vortex core visualization method based on an eigenvector method is introduced as an important tool to identify the vortex arising from tip leakage flow. As the flow rate varies, three critical operating points with distinctive features of flow unsteadiness are observed. At the first critical operating point, bubble-type breakdown occurs, and gives rise to a weak unsteadiness with high frequency in the rotor passage due to the oscillation of the recirculation region induced by the tip leakage vortex breakdown. At the second critical operating point, the vortex breakdown has transformed from bubble-type to spiral-type, which leads to the frequency of the pressure oscillation reduced almost by half and the amplitude increased significantly. At the third critical operating point, a new vortex that is perpendicular to the pressure surface comes into being in the tip region, which leads to a prominent pressure oscillation of the tip flow and another jump in amplitude. As a result, the evolution and development of tip leakage vortex breakdown are closely related to the tip flow unsteadiness of the investigated rotor.


1998 ◽  
Vol 120 (4) ◽  
pp. 683-692 ◽  
Author(s):  
M. Furukawa ◽  
K. Saiki ◽  
K. Nagayoshi ◽  
M. Kuroumaru ◽  
M. Inoue

Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 deg and 45 deg, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that “breakdown” of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The “vortex breakdown” causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in a behavior of the tip leakage flow that is substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.


Author(s):  
Zhe Yang ◽  
Hanan Lu ◽  
Tianyu Pan ◽  
Qiushi Li

Abstract In a boundary layer ingesting (BLI) propulsion system, the fan is continuously exposed to inflow distortions. The distorted inflows lead to non-uniform loss distributions along the radial and circumferential directions. Since the rotor tip suffers from higher intensive distortion, the local loss increment is a major contributor to the BLI fan performance penalty. To explore the effects of distorted inflows on tip leakage flow evolutions and associated mechanisms for increased loss in a BLI fan, three-dimensional full-annulus unsteady simulations are conducted. Results show that about 54% of total additional losses due to distortion are formed in tip region and more than 80% of tip entropy generation is related to the tip leakage flow. The intensities of leakage vortex-shock interactions vary at different annulus locations. When the rotor moves into distorted region, the vortex-shock interaction is weaker than the undistorted locations due to attenuated leakage flow. At the locations where the rotor is moving out from distorted region, the vortex-shock interaction is notably enhanced because the front part of blade tip airfoil suffers a higher load, resulting in a rapid vortex core expansion and eventually vortex breakdown. The increase of flow blockage in the front section of blade tip passages at local circumferential positions leads to a corresponding rise of flow loss. The findings in this study highlight the impacts of tip leakage flow on aerodynamic loss of fan working under BLI inflow distortion and provide improved understandings of loss mechanisms in a BLI fan.


Author(s):  
Masato Furukawa ◽  
Kazuhisa Saiki ◽  
Kenya Nagayoshi ◽  
Motoo Kuroumaru ◽  
Masahiro Inoue

Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 degrees and 45 degrees, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that “breakdown” of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The “vortex breakdown” causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in the behavior of the tip leakage flow substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Alessandro Corsini ◽  
Franco Rispoli ◽  
A. G. Sheard

This study assesses the effectiveness of modified blade-tip configurations in achieving passive noise control in industrial fans. The concepts developed here, which are based on the addition of end-plates at the fan-blade tip, are shown to have a beneficial effect on the fan aeroacoustic signature as a result of the changes they induce in tip-leakage-flow behavior. The aerodynamic merits of the proposed blade-tip concepts are investigated by experimental and computational studies in a fully ducted configuration. The flow mechanisms in the blade-tip region are correlated with the specific end-plate design features, and their role in the creation of overall acoustic emissions is clarified. The tip-leakage flows of the fans are analyzed in terms of vortex structure, chordwise leakage flow, and loading distribution. Rotor losses are also investigated. The modifications to blade-tip geometry are found to have marked effects on the multiple vortex behaviors of leakage flow as a result of changes in the near-wall fluid flow paths on both blade surfaces. The improvements in rotor efficiency are assessed and correlated with the control of tip-leakage flows produced by the modified tip end-plates.


Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Recirculating casing treatment (RCT) was studied in a subsonic axial flow compressor experimentally and numerically. The RCT was parameterized with the injector throat height and circumferential coverage percentage (ccp) to investigate its influence on compressor stability and on the overall performance in the experimentation. The injector throat height varied from 2 to 6 times the height of the rotor tip clearance, and the ccp ranged from 8.3% to 25% of the casing perimeter. Various RCT configurations were achieved with a modular design procedure. The rotor casing was instrumented with fast-response pressure transducers to detect the stall inception, rotational speed of stall cells, and pressure flow fields. Whole-passage unsteady simulations were also implemented for the RCT and solid casing to understand the flow details. Results indicate that both the compressor stability and overall performance can be improved through RCT with appropriate geometrical parameters. The effect of injector throat height on the stability depends on the choice of ccp, i.e., interaction effect exists. In general, the RCT with a moderate injector throat height and a large circumferential coverage is the optimal choice. Phase-locked pattern of the casing wall pressure reveals a weakened tip leakage vortex under the effect of RCT compared with the solid casing. The numerical results show that the RCT has a substantial effect on tip blockage even when the blade passages break away from the domain of RCT. The reduction of tip blockage induced by the tip leakage vortex is the main reason for the extension of stable operation range. The unsteadiness of double-leakage flow is detected both in the experiment and in numerical simulations. The pressure fluctuations caused by double-leakage flow are depressed with RCT. This observation indicates reduced losses related with the double-leakage flow. Although the stall inception is not changed by implementing RCT, the stall pattern is altered. The stall with two cells is detected in RCT compared with the solid casing with only one stall cell.


Author(s):  
Zhaodan Fei ◽  
Hui Xu ◽  
Rui Zhang ◽  
Yuan Zheng ◽  
Tong Mu ◽  
...  

The blade angle has a great effect on hydraulic performance and internal flow field for axial-flow pumps. This research investigated the effect of the blade angle on hydraulic performance and tip leakage vortex (TLV) of a slanted axial-flow pump. The hydraulic performance and the TLV are compared with different setting angles. The dimensionless turbulence kinetic energy (TKE) is used to investigate the TLV. A novel variable fv is utilized to analyze the relation among the TLV, strain tensor and vorticity tensor. The proper orthogonal decomposition (POD) method is used to analyze TLV structure. The results show that with the increase of the blade angle, the pump head is getting larger, the flow rate of the best efficiency moves to be larger, and both the primary TLV (P-TLV) and the secondary TLV (S-TLV) are getting stronger. The P-TLV often exists in the outer edge of TKE distribution and S-TLVs often exist in the largest value area of TKE. This phenomenon is more evident with blade angle increasing. Through POD method, it shows that the first six modes contain more than 90% of TKE. The reason why the TKE value near the region of S-TLV is high is that the tip leakage flow is a kind of jet-like flow with high kinetic energy. The main structure of the P-TLV is shown in modes 4−6, resulting in a reflux zone but not with the highest TKE.


2011 ◽  
Vol 2011 (0) ◽  
pp. _J051054-1-_J051054-5
Author(s):  
Hiroaki KIKUTA ◽  
Kazutoyo YAMADA ◽  
Satoshi Gunjishima ◽  
Goki OKADA ◽  
Yasunori HARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document