scholarly journals Gas turbine efficiency and ramp rate improvement through compressed air injection

Author(s):  
Kamal Abudu ◽  
Uyioghosa Igie ◽  
Orlando Minervino ◽  
Richard Hamilton

With the transition to more use of renewable forms of energy in Europe, grid instability that is linked to the intermittency in power generation is a concern, and thus, the fast response of on-demand power systems like gas turbines has become more important. This study focuses on the injection of compressed air to facilitate the improvement in the ramp-up rate of a heavy-duty gas turbine. The steady-state analysis of compressed airflow injection at part-load and full load indicates power augmentation of up to 25%, without infringing on the surge margin. The surge margin is also seen to be more limiting at part-load with maximum closing of the variable inlet guide vane than at high load with a maximum opening. Nevertheless, the percentage increase in the thermal efficiency of the former is slightly greater for the same amount of airflow injection. Part-load operations above 75% of power show higher thermal efficiencies with airflow injection when compared with other load variation approaches. The quasi-dynamic simulations performed using constant mass flow method show that the heavy-duty gas turbine ramp-up rate can be improved by 10% on average, for every 2% of compressor outlet airflow injected during ramp-up irrespective of the starting load. It also shows that the limitation of the ramp-up rate improvement is dominated by the rear stages and at lower variable inlet guide vane openings. The turbine entry temperature is found to be another restrictive factor at a high injection rate of up to 10%. However, the 2% injection rate is shown to be the safest, also offering considerable performance enhancements. It was also found that the ramp-up rate with air injection from the minimum environmental load to full load amounted to lower total fuel consumption than the design case.

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1186 ◽  
Author(s):  
Muhammad Baqir Hashmi ◽  
Tamiru Alemu Lemma ◽  
Zainal Ambri Abdul Karim

Variable geometry gas turbines are susceptible to various malfunctions and performance deterioration phenomena, such as variable inlet guide vane (VIGV) drift, compressor fouling, and high inlet air temperatures. The present study investigates the combined effect of these performance deterioration phenomena on the health and overall performance of a three-shaft gas turbine engine (GE LM1600). For this purpose, a steady-state simulation model of the turbine was developed using a commercial software named GasTurb 12. In addition, the effect of an inlet air cooling (IAC) technique on the gas turbine performance was examined. The design point results were validated using literature results and data from the manufacturer’s catalog. The gas turbine exhibited significant deterioration in power output and thermal efficiency by 21.09% and 7.92%, respectively, due to the augmented high inlet air temperature and fouling. However, the integration of the inlet air cooling technique helped in improving the power output, thermal efficiency, and surge margin by 29.67%, 7.38%, 32.84%, respectively. Additionally, the specific fuel consumption (SFC) was reduced by 6.88%. The VIGV down-drift schedule has also resulted in improved power output, thermal efficiency, and the surge margin by 14.53%, 5.55%, and 32.08%, respectively, while the SFC decreased by 5.23%. The current model can assist in troubleshooting the root cause of performance degradation and surging in an engine faced with VIGV drift and fouling simultaneously. Moreover, the combined study also indicated the optimum schedule during VIGV drift and fouling for performance improvement via the IAC technique.


Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Tong Seop Kim ◽  
Sung Tack Ro

To investigate the possible applications of the SOFC/MGT hybrid system to large electric power generations, a study for the kW-class hybrid power system conducted in our group is extended to the MW-class hybrid system in this study. Because of the matured technology of the gas turbine and commercial availability in the market, it is reasonable to construct a hybrid system with the selection of a gas turbine as an off-the-shelf item. For this purpose, the performance analysis is conducted to find out the optimal power size of the hybrid system based on a commercially available gas turbine. The optimal power size has to be selected by considering specifications of a selected gas turbine which limit the performance of the hybrid system. Also, the cell temperature of the SOFC is another limiting parameter to be considered in the selection of the optimal power size. Because of different system configuration of the hybrid system, the control strategies for the part-load operation of the MW-class hybrid system are quite different from the kW-class case. Also, it is necessary to consider that the control of supplied air to the MW-class gas turbine is typically done by the variable inlet guide vane located in front of the compressor inlet, instead of the control of variable rotational speed of the kW-class micro gas turbine. Performance characteristics at part-load operating conditions with different kinds of control strategies of supplied fuel and air to the hybrid system are investigated in this study.


Author(s):  
Thomas P. Schmitt ◽  
Herve Clement

Current trends in usage patterns of gas turbines in combined cycle applications indicate a substantial proportion of part load operation. Commensurate with the change in operating profile, there has been an increase in the propensity for part load performance guarantees. When a project is structured such that gas turbines are procured as equipment-only from the manufacturer, there is occasionally a gas turbine part load performance guarantee that coincides with the net plant combined cycle part load performance guarantee. There are several methods by which to accomplish part load gas turbine performance testing. One of the more common methods is to operate the gas turbine at the specified load value and construct correction curves at constant load. Another common method is to operate the gas turbine at a specified load percentage and construct correction curves at constant percent load. A third method is to operate the gas turbine at a selected load level that corresponds to a predetermined compressor inlet guide vane (IGV) angle. The IGV angle for this third method is the IGV angle that is needed to achieve the guaranteed load at the guaranteed boundary conditions. The third method requires correction curves constructed at constant IGV, just like base load correction curves. Each method of test and correction embodies a particular set of advantages and disadvantages. The results of an exploration into the advantages and disadvantages of the various performance testing and correction methods for part load performance testing of gas turbines are presented. Particular attention is given to estimates of the relative uncertainty for each method.


1983 ◽  
Vol 105 (1) ◽  
pp. 72-79 ◽  
Author(s):  
W. I. Rowen ◽  
R. L. Van Housen

Gas turbines furnished with heat recovery equipment generally have maximum cycle efficiency when the gas turbine is operated at its ambient capability. At reduced gas turbine output the cycle performance can fall off rapidly as gas turbine exhaust temperature drops, which reduces the heat recovery equipment performance. This paper reviews the economic gains which can be realized through use of several control modes which are currently available to optimize the cycle efficiency at part load operation. These include variable inlet guide vane (VIGV) control for single-shaft units, and combined VIGV and variable high-pressure set (compressor) speed control for two-shaft units. In addition to the normal control optimization mode to maintain the maximum exhaust temperature, a new control mode is discussed which allows airflow to be modulated in response to a process signal while at constant part load. This control feature is desirable for gas turbines which supply preheated combustion air to fired process heaters.


2002 ◽  
Vol 124 (3) ◽  
pp. 510-516 ◽  
Author(s):  
J. H. Kim ◽  
T. W. Song ◽  
T. S. Kim ◽  
S. T. Ro

A simulation program for transient analysis of the startup procedure of heavy duty gas turbines for power generation has been constructed. Unsteady one-dimensional conservation equations are employed and equation sets are solved numerically using a fully implicit method. A modified stage-stacking method has been adopted to estimate the operation of the compressor. Compressor stages are grouped into three categories (front, middle, rear), to which three different stage characteristic curves are applied in order to consider the different low-speed operating characteristics. Representative startup sequences were adopted. The dynamic behavior of a representative heavy duty gas turbine was simulated for a full startup procedure from zero to full speed. Simulated results matched the field data and confirmed unique characteristics such as the self-sustaining and the possibility of rear-stage choking at low speeds. Effects of the estimated schedules on the startup characteristics were also investigated. Special attention was paid to the effects of modulating the variable inlet guide vane on startup characteristics, which play a key role in the stable operation of gas turbines.


Author(s):  
W. I. Rowen ◽  
R. L. Van Housen

Gas turbines furnished with heat recovery equipment generally have maximum cycle efficiency when the gas turbine is operated at its ambient capability. At reduced gas turbine output the cycle performance can fall off rapidly as gas turbine exhaust temperature drops, which reduces the heat recovery equipment performance. This paper reviews the economic gains which can be realized through use of several control modes which are currently available to optimize the cycle efficiency at part load operation. These include variable inlet guide vane (VIGV) control for single-shaft units, and combined VIGV and variable high pressure set (compressor) speed control for two-shaft units. In addition to the normal control optimization mode to maintain the maximum exhaust temperature, a new control mode is discussed which allows airflow to be modulated in response to a process signal while at constant part load. This control feature is desirable for gas turbines which supply preheated combustion air to fired process heaters.


Author(s):  
João Roberto Barbosa ◽  
Cleverson Bringhenti ◽  
Jesuíno Takachi Tomita

A small 5-kN thrust gas turbine, designed and manufactured having in mind a thorough source of validation data, serves as basis for the study. The engine is an uncooled turbine, 5:1 pressure ratio axial flow compressor, delivering 8.1 kg/s air mass flow, whose control is made by a FADEC. Cold runs of the jet engine version have already been completed. The engine characteristics are being developed using the technology indicated in the paper. Accelerations and decelerations from idle to full power in a prescribed time interval and positive surge margin are the limitations imposed to the control system. In order to accomplish such requirements, a proportional, integral and derivative (PID) has been implemented to control the variable geometry transients, which proved to drive the engine to the required operating points. Compressor surge is avoided during accelerations or decelerations, imposing operation limits to the surge margin. In order to simulate a jet engine under transient operation, use was made of high-fidelity in-house developed software. The results presented in the paper are related to the compressor inlet guide vane (VIGV) transients. The engine transient calculations were predicted with the IGV settings varying with time, and the results are being used for the initial calibration of the transfer functions for the real time control.


Sign in / Sign up

Export Citation Format

Share Document