Parametric studies on interacting parameters influencing heat pipe performance

Author(s):  
Vineet Kumar ◽  
Sanjay V Jain ◽  
Yash Shah ◽  
Vikas J Lakhera

The performance of a heat pipe is governed by many parameters, the effects of which may influence each other. Hence, it is utmost important to optimize the combination of these parameters for an effective energy transfer in a heat pipe. In the present study, the interacting effects of four different parameters affecting the effectiveness of heat pipe are studied namely the fluid filling ratio (20%, 30%, 40%), the pressure inside the heat pipe (0.2 bar, 1 bar, 1.8 bar), the number of wick layers (0, 1, 2) and the inclination angle of heat pipe (0°, 45°, 90°). The response surface method based on central composite design approach is applied to optimize the number of experiments. The effects of interacting parameters on the effectiveness of heat pipe are discussed. Among the various parameters, the pressure inside the heat pipe was found to be the most important parameter followed by the fluid filling ratio, the inclination of heat pipe and the number of wick layers. From the analysis, the optimum combination of parameters was obtained as 40% filling ratio, 0.2 bar pressure, 2 wick layers and 0° inclination. At this point, the effectiveness predicted with the model and obtained through experiments was found to be 0.630 and 0.649 respectively. Based on the experimental results, a quadratic empirical model is developed which predicts the effectiveness of heat pipe within [Formula: see text]% of the experimental results for different operating conditions of heat pipe.

2011 ◽  
Vol 254 ◽  
pp. 155-158
Author(s):  
Chih Hsin Shih ◽  
Daniel Yen

In this study, mixing efficiencies of oscillating micromixers based on a compact disc under various operating conditions and geometric parameters were analyzed. By alternating the direction of rotation, stirring of liquids inside the chamber can be used for mixing. The experimental results showed that under the same operating conditions, deeper chamber and lower liquid filling ratio resulted in better mixing efficiency. Under the same distance of motion, oscillating frequency had more impact on the mixing efficiency than the oscillating amplitude. In addition, the experimental results also demonstrated that this batch mixing mechanism can also be utilized to achieve satisfactory mixing of liquids with viscosity of 100 cp within 10 seconds.


2021 ◽  
Vol 11 (12) ◽  
pp. 5445
Author(s):  
Shengyong Gan ◽  
Xingbo Fang ◽  
Xiaohui Wei

The aim of this paper is to obtain the strut friction–touchdown performance relation for designing the parameters involving the strut friction of the landing gear in a light aircraft. The numerical model of the landing gear is validated by drop test of single half-axle landing gear, which is used to obtain the energy absorption properties of strut friction in the landing process. Parametric studies are conducted using the response surface method. Based on the design of the experiment results and response surface functions, the sensitivity analysis of the design variables is implemented. Furthermore, a multi-objective optimization is carried out for good touchdown performance. The results show that the proportion of energy absorption of friction load accounts for more than 35% of the total landing impact energy. The response surface model characterizes well for the landing response, with a minimum fitting accuracy of 99.52%. The most sensitive variables for the four landing responses are the lower bearing width and the wheel moment of inertia. Moreover, the max overloading of sprung mass in LC-1 decreases by 4.84% after design optimization, which illustrates that the method of analysis and optimization on the strut friction of landing gear is efficient for improving the aircraft touchdown performance.


2021 ◽  
pp. 136943322110093
Author(s):  
Jinqing Jia ◽  
Qi Cao ◽  
Lihua Zhang ◽  
Jiayu Zhou

Concrete made by post-filling coarse aggregate process could reduce the cement content greatly compared with traditional concrete placement method. Thus, it not only lowers the production cost of concrete through lower usage of cement but also reduces the CO2 emissions to the environment. In this paper, the compressive and tensile strength of post-filling coarse aggregate concrete with different post-filling ratios (PFRs) (0%, 10%, 15%, 20%, 25%, 30%) and concrete strength grades (C30, C40, C50) were first studied. Then the flexural performance of nineteen concrete beams with different concrete strength, post-filling ratios, reinforcement ratios was investigated. The experimental results showed that the compressive strength and elastic modulus of the post-filling coarse aggregate concrete increased with the increase of the post-filling ratio of coarse aggregate, reaching the peak value at the filling ratio of 20%. It indicated that there was no obvious difference in the failure mode as well as middle-span deflections between post-filling coarse aggregate concrete (PFCC) beams and ordinary concrete (OC) beams. Ductile failure was observed for all nineteen specimens. Results demonstrated that the cracking load, yield load, and ultimate load of the post-filling coarse aggregate concrete beams all reached the peak value at the post-filling ratio of 20%. In addition, the theoretical predictions of cracking loads and ultimate load carrying capacities matched the experimental results in satisfactory agreement.


Author(s):  
Yiqi Cheng ◽  
Xinhua Wang ◽  
Waheed Ur Rehman ◽  
Tao Sun ◽  
Hasan Shahzad ◽  
...  

This study presents a novel cylindrical vane pump based on the traditional working principle. The efficiency of the cylindrical vane pump was verified by experimental validation and numerical analysis. Numerical analysis, such as kinematics analysis, was performed in Pro/Mechanism and unsteady flow-field analysis was performed using ANSYS FLUENT. The stator surface equations were derived using the geometric theory of the applied spatial triangulation function. A three-dimensional model of the cylindrical vane pump was established with the help of MATLAB and Pro/E. The kinematic analysis helped in developing kinematic equations for cylindrical vane pumps and proved the effectiveness of the structural design. The maximum inaccuracy error of the computational fluid dynamics (CFD) model was 5.7% compared with the experimental results, and the CFD results show that the structure of the pump was reasonable. An experimental test bench was developed, and the results were in excellent agreement with the numerical results of CFD. The experimental results show that the cylindrical vane pump satisfied the three-element design of a positive-displacement pump and the trend of changes in efficiency was the same for all types of efficiency under different operating conditions. Furthermore, the volumetric efficiency presented a nonlinear positive correlation with increased rotational velocity, the mechanical efficiency showed a nonlinear negative correlation, and the total efficiency first increased and then decreased. When the rotational velocity was 1.33[Formula: see text] and the discharge pressure was 0.68[Formula: see text], the total efficiency reached its maximum value.


Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


1992 ◽  
Vol 3 (2) ◽  
pp. 176-192
Author(s):  
T.W. Abou-Arab ◽  
M. Othman ◽  
Y.S.H. Najjar

Increasing requirements for vehicle confort, economy and reliability lead some investigators to consider the relationships between the mechanical vibrations with the heat and fluid flow induced vibration and noise in a more accurate manner. This paper describes the variation of the vibration phenomena associated with the motion of some engine components under different operating conditions. The measured vibration spectra indicates its capability in predicting symptoms of early engine failures, hence, expediting their control using a suitable feedback system. Parametric studies involving the effect of air-fuel ratio, ignition timing and engine speed on the vibration pattern are also carried out. These studies indicate that the amplitude of vibration decreases as the speed increases then increases again after certain engine speed. The effect of ignition system characteristic on the induced vibration are obtained and the correlation between the developed power and the engine dynamics over a range of operating conditions are discussed.


2018 ◽  
Vol 18 (07) ◽  
pp. 1840011
Author(s):  
MI-HYUN CHOI ◽  
HYUNG-SIK KIM ◽  
JI-HUN JO ◽  
JI-SUN KIM ◽  
JAE-HOON JUN ◽  
...  

This study aims to investigate the interaction effect between the beam diameter and energy density, which are perceived as laser-induced tactile perception by humans, by diversely varying the laser parameters, beam diameter, and energy. Eight healthy male college students of 23.5[Formula: see text][Formula: see text][Formula: see text]1.7 years participated in the study. The range of the beam diameter of the displayed laser stimulation was between 0.03[Formula: see text]mm and 8[Formula: see text]mm, and a total of 21 sizes were displayed. The laser energy was sequentially displayed from the minimum energy that can be displayed by one beam diameter to the maximum energy range that does not exceed the maximum permissible exposure (MPE) level since the energy varies according to the beam diameter. The laser energy was controlled by an optical density ([Formula: see text]) filter and was measured by an optical power meter (energy meter). Furthermore, the beam diameter was adjusted by moving the lens, which was confirmed with the beam profiler. The experimental test consists of the control phase (19[Formula: see text]s), stimulus phase (7[Formula: see text]s), and response phase (4[Formula: see text]s); the total duration of the test was 30[Formula: see text]s. The stimulus phase is the period in which stimulation was displayed on the skin through laser irradiation, and the stimulation was displayed by changing the beam diameter and the energy from the laser. The total number of beam diameter and energy pairs displayed to the subjects was 113 and 5 trials of irradiation were conducted for each pair. Stimulation perception response was recorded by pressing the response buttons during the response phase, and the responses were predefined as “no feeling,” “tactile sensation”, and “pain.” Through the extracted response data from the response phase, the beam diameter and energy density pair in which more than 50% of the subjects responded as having perceived tactile sensation were selected from the possible laser energy that could be displayed from one beam diameter. The simulation results showed that increasing the beam diameter increased the penetration depth, indicating an effective energy transfer to the skin. Therefore, increasing the beam diameter results in increased scattering, and hence increased penetration depth, and ultimately a more effective energy transfer. Therefore, increased beam diameter results in higher energy transfer efficiency, indicating that the required energy density by more than 50% of the subjects to perceive tactile sensation decreased.


Sign in / Sign up

Export Citation Format

Share Document