batch mixing
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 92 (11) ◽  
pp. 114104
Author(s):  
Anandvinod Dalmiya ◽  
Jai M. Mehta ◽  
Robert S. Tranter ◽  
Patrick T. Lynch

2021 ◽  
Author(s):  
Dineshkumar Patel

The major technological challenges faced by modern chemical industries are non-ideal flows such as dead zones and channeling encountered in the mixing of fluids with complex rheology. These cause sub-optimal mixing and lead to low quality products and high costs of raw materials. Therefore, the core objectives of this study were to develop methodology and tools to design an efficient continuous-flow mixing system for the fluids with complex rheology using electrical resistance tomography (ERT), computational fluid dynamics (CFD), and dynamic tests. The xanthan gum solution, which is a pesudoplastic fluid with yield stress, was used to study the dynamic behavior of the continuous-flow mixing process. The power consumption, cavern size, mixing time, and the extents of channelling and the fraction of fully mixed volume were successfully determined using dynamic tests, ERT tests, and CFD simulations and used as mixing quality criteria. A novel and efficient method was developed for flow visualization in the continuous-flow mixing of opaque fluids using 2D and 3D tomograms. A unique study on identifying the sources of flow non-ideality in non-Newtonian fluids with yield stress was done by visualizing the flow pattern inside the continuous-flow mixing vessel using 2D and 3D tomograms. The deformation of the cavern was analyzed and quantified in the continuous-flow mixing system for yield-pseudoplastic fluids using ERT. Moreover, the cavern volume was compared with the fully mixed volume and it was found that the latter was higher due to the extra momentum induced by the inlet-outlet flow. A novel study on exploring the effect of the rheological parameters of the pseudoplastic fluids with yield stress on the non ideal flows in a continuous-flow mixing system was performed using CFD. The CFD results revealed that the mixing quality was improved when the degree of the shear thinning was increased. The ratio of the residence time to the batch mixing time was evaluated to achieve ideal mixing for the continuous-flow mixing of yield-pseudoplastic fluids using dynamic tests and ERT. It was found that the ratio of residence time to the batch mixing time should be at least 8.2 or higher to achieve ideal mixing.


2021 ◽  
Author(s):  
Dineshkumar Patel

The major technological challenges faced by modern chemical industries are non-ideal flows such as dead zones and channeling encountered in the mixing of fluids with complex rheology. These cause sub-optimal mixing and lead to low quality products and high costs of raw materials. Therefore, the core objectives of this study were to develop methodology and tools to design an efficient continuous-flow mixing system for the fluids with complex rheology using electrical resistance tomography (ERT), computational fluid dynamics (CFD), and dynamic tests. The xanthan gum solution, which is a pesudoplastic fluid with yield stress, was used to study the dynamic behavior of the continuous-flow mixing process. The power consumption, cavern size, mixing time, and the extents of channelling and the fraction of fully mixed volume were successfully determined using dynamic tests, ERT tests, and CFD simulations and used as mixing quality criteria. A novel and efficient method was developed for flow visualization in the continuous-flow mixing of opaque fluids using 2D and 3D tomograms. A unique study on identifying the sources of flow non-ideality in non-Newtonian fluids with yield stress was done by visualizing the flow pattern inside the continuous-flow mixing vessel using 2D and 3D tomograms. The deformation of the cavern was analyzed and quantified in the continuous-flow mixing system for yield-pseudoplastic fluids using ERT. Moreover, the cavern volume was compared with the fully mixed volume and it was found that the latter was higher due to the extra momentum induced by the inlet-outlet flow. A novel study on exploring the effect of the rheological parameters of the pseudoplastic fluids with yield stress on the non ideal flows in a continuous-flow mixing system was performed using CFD. The CFD results revealed that the mixing quality was improved when the degree of the shear thinning was increased. The ratio of the residence time to the batch mixing time was evaluated to achieve ideal mixing for the continuous-flow mixing of yield-pseudoplastic fluids using dynamic tests and ERT. It was found that the ratio of residence time to the batch mixing time should be at least 8.2 or higher to achieve ideal mixing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ítalo R. Coura ◽  
Ottavio R. D. R. Carmignano ◽  
Ana Pacheli Heitmann ◽  
Fernando S. Lameiras ◽  
Rochel M. Lago ◽  
...  

AbstractThe iron mine tailings accumulation in dams is an environmental and economic problem. The composite based on high-density polyethylene/iron mine tailing production for the application of wood plastic and some items of domestic plastic industry can be a good alternative to reduce the rejects in the environment. This work presents the influence of the processing methodology in the mechanical, thermal and morphological properties of composites based on the high-density polyethylene/iron mine tailing. Four methodology processing by continuous and/or batch mixing were available. The iron mine tailing particles in the polymer matrix promoted an increase in mechanical strength and thermal stability. Besides, the particles acted as flame retardant. The iron mine tailing materials produced using batch mixing showed more significant modifications in the properties due to the better dispersion of the filler as shown by scanning electron microscopy.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 373
Author(s):  
Scott A. Wells

Due to elevated runoff stormwater temperatures from impervious areas, one management strategy to reduce stormwater temperature is the use of underground flow through rock media termed a cooling trench. This paper examines the governing equations for the liquid phase and media phases for modeling the temperature leaving a cooling trench assuming that changes in temperature occurred longitudinally through the cooling trench. This model is dependent on parameters such as the media type, porosity, media initial temperature, inflow rate, and inflow temperature. Several approaches were explored mathematically for evaluating the change in temperature of the water and the cooling trench media. Typical soil–water heat transfer coefficients were summarized. Examples of predictions of outflow temperatures were shown for different modeling assumptions, such as well-mixed conditions, batch mixing and subsequent release, and steady-state and dynamic conditions. Several of these examples evaluated how long rock media would cool following a stormwater event and how the cooling trench would respond to multiple stormwater events.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1627
Author(s):  
Elnaz Esmizadeh ◽  
Costas Tzoganakis ◽  
Tizazu H. Mekonnen

Non-isothermal thermogravimetric analysis (TGA) was employed to investigate the degradation of polypropylene (PP) during simulated product manufacturing in a secondary process and wood–plastic composites. Multiple batch mixing cycles were carried out to mimic the actual recycling. Kissinger–Akahira–Sunose (KAS), Ozawa–Flynn–Wall (OFW), Friedman, Kissinger and Augis models were employed to calculate the apparent activation energy (Ea). Experimental investigation using TGA indicated that the thermograms of PP recyclates shifted to lower temperatures, revealing the presence of an accelerated degradation process induced by the formation of radicals during chain scission. Reprocessing for five cycles led to roughly a 35% reduction in ultimate mixing torque, and a more than 400% increase in the melt flow rate of PP. Ea increased with the extent of degradation (α), and the dependency intensified with the reprocessing cycles. In biocomposites, despite the detectable degradation steps of wood and PP in thermal degradation, a partial coincidence of degradation was observed under air. Deconvolution was employed to separate the overlapped cellulose and PP peaks. Under nitrogen, OFW estimations for the deconvoluted PP exposed an upward shift of Ea at the whole range of α due to the high thermal absorbance of the wood chars. Under air, the Ea of deconvoluted PP showed an irregular rise in the initial steps, which could be related to the high volume of evolved volatiles from the wood reducing the oxygen diffusion.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mohamed O. Mohsen ◽  
Mohamed S. Al Ansari ◽  
Ramzi Taha ◽  
Nasser Al Nuaimi ◽  
Ala Abu Taqa

Recently, remarkable types of carbon nanofilaments called carbon nanotubes (CNTs) have raised the interest of many concrete and cementitious composite researchers due to their significant mechanical, electrical, thermal, kinetic, and chemical properties. These nanofilaments are considered promising applicants to use in producing high-performance cement-based composite materials. In this research, the effect of CNT use on the flexural strength, strain capacity, permeability, and microstructure of concrete was investigated. Concrete batches of 0, 0.03, 0.08, 0.15, and 0.25 wt.% CNTs were prepared using a mixing method that consisted of a 30-minute solution sonication and a 60-minute batch mixing. On the 28th day, the mechanical properties were determined. The results indicated that concrete prepared using high CNT contents of 0.15 and 0.25 wt.% increased the flexural strength by more than 100% in comparison with 0% CNT concrete. Furthermore, the results showed that CNTs would increase the ductility of concrete beams by about 150%. The permeability test results showed the benefits of CNT inclusion in reducing the permeability of concrete. The permeability coefficient (kT) decreased by at least 45% when CNTs were added to concrete. A qualitative microstructural analysis illustrated the uniform dispersion of CNT filaments within the concrete hydration products in all batches.


2018 ◽  
Vol 16 (1) ◽  
pp. 187-198 ◽  
Author(s):  
H. Sepehr ◽  
P. Nikrityuk ◽  
D. Breakey ◽  
R. S. Sanders

Sign in / Sign up

Export Citation Format

Share Document